ترغب بنشر مسار تعليمي؟ اضغط هنا

Reserved-Length Prefix Coding

116   0   0.0 ( 0 )
 نشر من قبل Michael Baer
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Michael B. Baer




اسأل ChatGPT حول البحث

Huffman coding finds an optimal prefix code for a given probability mass function. Consider situations in which one wishes to find an optimal code with the restriction that all codewords have lengths that lie in a user-specified set of lengths (or, equivalently, no codewords have lengths that lie in a complementary set). This paper introduces a polynomial-time dynamic programming algorithm that finds optimal codes for this reserved-length prefix coding problem. This has applications to quickly encoding and decoding lossless codes. In addition, one modification of the approach solves any quasiarithmetic prefix coding problem, while another finds optimal codes restricted to the set of codes with g codeword lengths for user-specified g (e.g., g=2).



قيم البحث

اقرأ أيضاً

93 - Michael B. Baer 2007
Efficient optimal prefix coding has long been accomplished via the Huffman algorithm. However, there is still room for improvement and exploration regarding variants of the Huffman problem. Length-limited Huffman coding, useful for many practical app lications, is one such variant, in which codes are restricted to the set of codes in which none of the $n$ codewords is longer than a given length, $l_{max}$. Binary length-limited coding can be done in $O(n l_{max})$ time and O(n) space via the widely used Package-Merge algorithm. In this paper the Package-Merge approach is generalized without increasing complexity in order to introduce a minimum codeword length, $l_{min}$, to allow for objective functions other than the minimization of expected codeword length, and to be applicable to both binary and nonbinary codes; nonbinary codes were previously addressed using a slower dynamic programming approach. These extensions have various applications -- including faster decompression -- and can be used to solve the problem of finding an optimal code with limited fringe, that is, finding the best code among codes with a maximum difference between the longest and shortest codewords. The previously proposed method for solving this problem was nonpolynomial time, whereas solving this using the novel algorithm requires only $O(n (l_{max}- l_{min})^2)$ time and O(n) space.
102 - Michael B. Baer 2007
Let $P = {p(i)}$ be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial $P$ for which known methods find a source code that is optimal in the sense of minimizing expected codeword length. For some applications, however, a source code should instead minimize one of a family of nonlinear objective functions, $beta$-exponential means, those of the form $log_a sum_i p(i) a^{n(i)}$, where $n(i)$ is the length of the $i$th codeword and $a$ is a positive constant. Applications of such minimizations include a problem of maximizing the chance of message receipt in single-shot communications ($a<1$) and a problem of minimizing the chance of buffer overflow in a queueing system ($a>1$). This paper introduces methods for finding codes optimal for such exponential means. One method applies to geometric distributions, while another applies to distributions with lighter tails. The latter algorithm is applied to Poisson distributions. Both are extended to minimizing maximum pointwise redundancy.
102 - Boris Ryabko 2021
We consider the issue of direct access to any letter of a sequence encoded with a variable length code and stored in the computers memory, which is a special case of the random access problem to compressed memory. The characteristics according to whi ch methods are evaluated are the access time to one letter and the memory used. The proposed methods, with various trade-offs between the characteristics, outperform the known ones.
We present many new results related to reliable (interactive) communication over insertion-deletion channels. Synchronization errors, such as insertions and deletions, strictly generalize the usual symbol corruption errors and are much harder to prot ect against. We show how to hide the complications of synchronization errors in many applications by introducing very general channel simulations which efficiently transform an insertion-deletion channel into a regular symbol corruption channel with an error rate larger by a constant factor and a slightly smaller alphabet. We generalize synchronization string based methods which were recently introduced as a tool to design essentially optimal error correcting codes for insertion-deletion channels. Our channel simulations depend on the fact that, at the cost of increasing the error rate by a constant factor, synchronization strings can be decoded in a streaming manner that preserves linearity of time. We also provide a lower bound showing that this constant factor cannot be improved to $1+epsilon$, in contrast to what is achievable for error correcting codes. Our channel simulations drastically generalize the applicability of synchronization strings. We provide new interactive coding schemes which simulate any interactive two-party protocol over an insertion-deletion channel. Our results improve over the interactive coding schemes of Braverman et al. [TransInf 2017] and Sherstov and Wu [FOCS 2017], which achieve a small constant rate and require exponential time computations, with respect to computational and communication complexities. We provide the first computationally efficient interactive coding schemes for synchronization errors, the first coding scheme with a rate approaching one for small noise rates, and also the first coding scheme that works over arbitrarily small alphabet sizes.
We consider communication over a noisy network under randomized linear network coding. Possible error mechanism include node- or link- failures, Byzantine behavior of nodes, or an over-estimate of the network min-cut. Building on the work of Koetter and Kschischang, we introduce a probabilistic model for errors. We compute the capacity of this channel and we define an error-correction scheme based on random sparse graphs and a low-complexity decoding algorithm. By optimizing over the code degree profile, we show that this construction achieves the channel capacity in complexity which is jointly quadratic in the number of coded information bits and sublogarithmic in the error probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا