ﻻ يوجد ملخص باللغة العربية
Multi-step pathways, constituted of a sequence of reconfigurations, are central to a wide variety of natural and man-made systems. Such pathways autonomously execute in self-guided processes such as protein folding and self-assembly, but require external control in macroscopic mechanical systems, provided by, e.g., actuators in robotics or manual folding in origami. Here we introduce shape-changing mechanical metamaterials, that exhibit self-guided multi-step pathways in response to global uniform compression. Their design combines strongly nonlinear mechanical elements with a multimodal architecture that allows for a sequence of topological reconfigurations, i.e., modifications of the topology caused by the formation of internal self-contacts. We realized such metamaterials by digital manufacturing, and show that the pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We furthermore demonstrate that self-contacts suppress pathway errors. Finally, we demonstrate how hierarchical architectures allow to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening new avenues for self-folding media, pluripotent materials, and pliable devices in, e.g., stretchable electronics and soft robotics.
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy requir
Defects, and in particular topological defects, are architectural motifs that play a crucial role in natural materials. Here we provide a systematic strategy to introduce such defects in mechanical metamaterials. We first present metamaterials that a
DNA is an ideal candidate to organize matter on the nanoscale, primarily due to the specificity and complexity of DNA based interactions. Recent advances in this direction include the self-assembly of colloidal crystals using DNA grafted particles. I
Topological metamaterials have invaded the mechanical world, demonstrating acoustic cloaking and waveguiding at finite frequencies and variable, tunable elastic response at zero frequency. Zero frequency topological states have previously relied on t
Mechanical metamaterials present a promising platform for seemingly impossible mechanics. They often require incompatibility of their elementary building blocks, yet a comprehensive understanding of its role remains elusive. Relying on an analogy to