ﻻ يوجد ملخص باللغة العربية
Topological metamaterials have invaded the mechanical world, demonstrating acoustic cloaking and waveguiding at finite frequencies and variable, tunable elastic response at zero frequency. Zero frequency topological states have previously relied on the Maxwell condition, namely that the system has equal numbers of degrees of freedom and constraints. Here, we show that otherwise rigid periodic mechanical structures are described by a map with a nontrivial topological degree (a generalization of the winding number introduced by Kane and Lubensky) that creates, directs and protects modes on their boundaries. We introduce a model system consisting of rigid quadrilaterals connected via free hinges at their corners in a checkerboard pattern. This bulk structure generates a topological linear deformation mode exponentially localized in one corner, as investigated numerically and via experimental prototype. Unlike the Maxwell lattices, these structures select a single desired mode, which controls variable stiffness and mechanical amplification that can be incorporated into devices at any scale.
Topological mechanics can realize soft modes in mechanical metamaterials in which the number of degrees of freedom for particle motion is finely balanced by the constraints provided by interparticle interactions. However, solid objects are generally
Defects, and in particular topological defects, are architectural motifs that play a crucial role in natural materials. Here we provide a systematic strategy to introduce such defects in mechanical metamaterials. We first present metamaterials that a
Multi-step pathways, constituted of a sequence of reconfigurations, are central to a wide variety of natural and man-made systems. Such pathways autonomously execute in self-guided processes such as protein folding and self-assembly, but require exte
Double-negative acoustic metamaterials (AMMs) offer the promising ability of superlensing for applications in ultrasonography, biomedical sensing and nondestructive evaluation. Here, under the simultaneous increasing or non-increasing mechanisms, we
Atomistic simulations are employed to study structural evolution of pore ensembles in binary glasses under periodic shear deformation with varied amplitude. The consideration is given to porous systems in the limit of low porosity. The initial ensemb