ﻻ يوجد ملخص باللغة العربية
We consider possible detection of nonclassicality of primordial gravitational waves (PGWs) by applying Hanbury Brown - Twiss (HBT) interferometry to cosmology. We characterize the nonclassicality of PGWs in terms of sub-Poissonian statistics that can be measured by the HBT interferometry. We show that the presence of classical sources during inflation makes us possible to detect nonclassical PGWs with the HBT interferometry. We present two examples that realize the classical sources during inflation. It turns out that PGWs with frequencies higher than 10 kHz enable us to detect their nonclassicality.
We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high tra
Nano- and micromechanical solid-state quantum devices have become a focus of attention. Reliably generating nonclassical states of their motion is of interest both for addressing fundamental questions about macroscopic quantum phenomena and for devel
We propose using the LIGO-Virgo detector network as a Hanbury Brown--Twiss (HBT) interferometer. Our focus is on the behavior of the gravitational waves at the detector rather than the source. We examine HBT interferometry for gravitational waves fro
Multi-peaked spectra of the primordial gravitational waves are considered as a phenomenologically relevant source of information about the dynamics of sequential phase transitions in the early Universe. In particular, such signatures trace back to sp
The Hanbury Brown Twiss (HBT) interferometer was proposed to observe intensity correlations of starlight to measure a stars angular diameter. As the intensity of light that reaches the detector from a star is very weak, one cannot usually get a worka