ﻻ يوجد ملخص باللغة العربية
We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high transverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10^9 that makes it similar to laser sources. Intensity correlation measurements in spatial and frequency domain gave an estimate of the FEL average pulse duration of 50 fs. Our measurements of the higher-order correlation functions indicate that FEL radiation obeys Gaussian statistics, which is characteristic to chaotic sources.
We demonstrate experimentally Hanbury Brown and Twiss (HBT) interferometry at a hard X-ray Free Electron Laser (XFEL) on a sample diffraction patterns. This is different from the traditional approach when HBT interferometry requires direct beam measu
We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry. The experiments
We show that the essential physics of the Hanbury Brown-Twiss (HBT) and the thermal light ghost imaging experiments is the same, i.e., due to the intensity fluctuations of the thermal light. However, in the ghost imaging experiments, a large number o
We report measurements of Hanbury Brown and Twiss correlation of coherent light transmitted through disordered one-dimensional photonic lattices. Although such a lattice exhibits transverse Anderson localization when a single input site is excited, u
Second-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft X-ray SASE3 undulator beamline at a photon energy of 1.2 keV i