ﻻ يوجد ملخص باللغة العربية
The Hanbury Brown Twiss (HBT) interferometer was proposed to observe intensity correlations of starlight to measure a stars angular diameter. As the intensity of light that reaches the detector from a star is very weak, one cannot usually get a workable signal-to-noise ratio. We propose an improved HBT interferometric scheme introducing optical parametric amplifiers into the system, to amplify the correlation signal, which is used to calculate the angular diameter. With the use of optical parametric amplifiers, the signal-to-noise ratio can be increased up to 400 percent.
Nano- and micromechanical solid-state quantum devices have become a focus of attention. Reliably generating nonclassical states of their motion is of interest both for addressing fundamental questions about macroscopic quantum phenomena and for devel
We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high tra
We consider possible detection of nonclassicality of primordial gravitational waves (PGWs) by applying Hanbury Brown - Twiss (HBT) interferometry to cosmology. We characterize the nonclassicality of PGWs in terms of sub-Poissonian statistics that can
We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry. The experiments
Quadratic detection in linear mesoscopic transport systems produces cross terms that can be viewed as interference signals reflecting statistical properties of charge carriers. In electronic systems these cross term interferences arise from exchange