ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity

76   0   0.0 ( 0 )
 نشر من قبل David Silvester
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with the analysis and implementation of robust finite element approximation methods for mixed formulations of linear elasticity problems where the elastic solid is almost incompressible. Several novel a posteriori error estimators for the energy norm of the finite element error are proposed and analysed. We establish upper and lower bounds for the energy error in terms of the proposed error estimators and prove that the constants in the bounds are independent of the Lam{e} coefficients: thus the proposed estimators are robust in the incompressible limit. Numerical results are presented that validate the theoretical estimates. The software used to generate these results is available online.



قيم البحث

اقرأ أيضاً

We consider so-called Herrmann and Hydrostatic mixed formulations of classical linear elasticity and analyse the error associated with locally stabilised $P_1-P_0$ finite element approximation. First, we prove a stability estimate for the discrete pr oblem and establish an a priori estimate for the associated energy error. Second, we consider a residual-based a posteriori error estimator as well as a local Poisson problem estimator. We establish bounds for the energy error that are independent of the Lam{e} coefficients and prove that the estimators are robust in the incompressible limit. A key issue to be addressed is the requirement for pressure stabilisation. Numerical results are presented that validate the theory. The software used is available online.
Topological optimization finds a material density distribution minimizing a functional of the solution of a partial differential equation (PDE), subject to a set of constraints (typically, a bound on the volume or mass of the material). Using a fin ite elements discretization (FEM) of the PDE and functional we obtain an integer programming problem. Due to approximation error of FEM discretization, optimization problem becomes mesh-depended and possess false, physically inadequate optimums, while functional value heavily depends on fineness of discretization scheme used to compute it. To alleviate this problem, we propose regularization of given functional by error estimate of FEM discretization. This regularization provides robustness of solutions and improves obtained functional values as well. While the idea is broadly applicable, in this paper we apply our method to the heat conduction optimization. This type of problems are of practical importance in design of heat conduction channels, heat sinks and other types of heat guides.
The focus of this work is a posteriori error estimation for stochastic Galerkin approximations of parameter-dependent linear elasticity equations. The starting point is a three-field PDE model in which the Youngs modulus is an affine function of a co untable set of parameters. We analyse the weak formulation, its stability with respect to a weighted norm and discuss approximation using stochastic Galerkin mixed finite element methods (SG-MFEMs). We introduce a novel a posteriori error estimation scheme and establish upper and lower bounds for the SG-MFEM error. The constants in the bounds are independent of the Poisson ratio as well as the SG-MFEM discretisation parameters. In addition, we discuss proxies for the error reduction associated with certain enrichments of the SG-MFEM spaces and we use these to develop an adaptive algorithm that terminates when the estimated error falls below a user-prescribed tolerance. We prove that both the a posteriori error estimate and the error reduction proxies are reliable and efficient in the incompressible limit case. Numerical results are presented to validate the theory. All experiments were performed using open source (IFISS) software that is available online.
We consider the nearly incompressible linear elasticity problem with an uncertain spatially varying Youngs modulus. The uncertainty is modelled with a finite set of parameters with prescribed probability distribution. We introduce a novel three-field mixed variational formulation of the PDE model and discuss its approximation by stochastic Galerkin mixed finite element techniques. First, we establish the well posedness of the proposed variational formulation and the associated finite-dimensional approximation. Second, we focus on the efficient solution of the associated large and indefinite linear system of equations. A new preconditioner is introduced for use with the minimal residual method (MINRES). Eigenvalue bounds for the preconditioned system are established and shown to be independent of the discretisation parameters and the Poisson ratio. The S-IFISS software used for computation is available online.
A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element pair, it constructs an $H (text{div})$-conforming, weakly symmetric stress reconstruction. Our focus is on the Taylor-Hood combination of continuous finite element spaces of polynomial degrees $k+1$ and $k$ for the displacement and the pressure, respectively. Our construction leads then to reconstructed stresses by Raviart-Thomas elements of degree $k$ which are weakly symmetric in the sense that its anti-symmetric part is zero tested against continuous piecewise polynomial functions of degree $k$. The computation is performed locally on a set of vertex patches covering the computational domain in the spirit of equilibration cite{BraSch:08}. Due to the weak symmetry constraint, the local problems need to satisfy consistency conditions associated with all rigid body modes, in contrast to the case of Poissons equation where only the constant modes are involved. The resulting error estimator is shown to constitute a guaranteed upper bound for the error with a constant that depends only on the shape regularity of the triangulation. Local efficiency, uniformly in the incompressible limit, is deduced from the upper bound by the residual error estimator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا