ﻻ يوجد ملخص باللغة العربية
An Iterative Reanalysis Approximation (IRA) is integrated with the Moving Morphable Components (MMCs) based topology optimization (IRA-MMC) in this study. Compared with other classical topology optimization methods, the Finite Element (FE) based solver is replaced with the suggested IRA method. In this way, the expensive computational cost can be significantly saved by several nested iterations. The optimization of linearly elastic planar structures is constructed by the MMC, the specifically geometric parameters of which are taken as design variables to acquire explicitly geometric boundary. In the suggested algorithm, a hybrid optimizer based on the Method of Moving Asymptotes (MMA) approach and the Globally Convergent version of the Method of Moving Asymptotes (GCMMA) is suggested to improve convergence ratio and avoid local optimum. The proposed approach is evaluated by some classical benchmark problems in topology optimization, where the results show significant time saving without compromising accuracy.
Moving Morphable Component (MMC) based topology optimization approach is an explicit algorithm since the boundary of the entity explicitly described by its functions. Compared with other pixel or node point-based algorithms, it is optimized through t
Volumetric spline parameterization and computational efficiency are two main challenges in isogeometric analysis (IGA). To tackle this problem, we propose a framework of computation reuse in IGA on a set of three-dimensional models with similar seman
This paper presents an efficient gradient projection-based method for structural topological optimization problems characterized by a nonlinear objective function which is minimized over a feasible region defined by bilateral bounds and a single line
Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design(CAD). In this paper, an improved isogeometric analysis(IGA) method for trimmed geometries is proposed. We will show that the proposed method reduces the nu
Axion helioscopes like the planned International Axion Observatory (IAXO) search for evidence of axions and axion-like particles (ALPs) from the Sun. A strong magnetic field is used to convert ALPs into photons via the generic ALP-photon coupling. To