ﻻ يوجد ملخص باللغة العربية
The interface of two dissimilar materials is well known for surprises in condensed matter, and provides avenues for rich physics as well as seeds for future technological advancements. We present some exciting magnetization (M) and remnant magnetization ($mu$) results, which conclusively arise at the interface of two highly functional materials, namely the graphitic shells of a carbon nanotube (CNT) and $alpha$-Fe$_2$O$_3$, a Dzyaloshinskii-Moriya Interaction (DMI) driven weak ferromagnet (WFM) and piezomagnet (PzM). We show that the encapsulation inside CNT leads to a very significant enhancement in M and correspondingly in $mu$, a time- stable part of the remanence, exclusive to the WFM phase. Up to 70% of in-field magnetization is retained in the form of $mu$ at the room temperature. Lattice parameter of CNT around the Morin transition of the encapsulate exhibits a clear anomaly, confirming the novel interface effects. Control experiments on bare $alpha$-Fe$_2$O$_3$ nanowires bring into fore that the weak ferromagnets such as $alpha$-Fe$_2$O$_3$ as are not as weak, as far as their remanence and its stability with time is concerned, and encapsulation inside CNT leads to a substantial enhancement in these functionalities.
We have recently established that a number of Dzyaloshinskii-Moriya interaction driven canted antiferromagnets or weak ferrromagnets (WFM) including hematite exhibit an ultra-slow magnetization relaxation phenomenon, leading to the observation of a t
We investigate the electronic structure of carbon nanotubes functionalized by adsorbates anchored with single C-C covalent bonds. We find that, despite the particular adsorbate, a spin moment with a universal value of 1.0 $mu_B$ per molecule is induc
We report the observation of an intriguing behaviour in the transport properties of nanodevices operating in a regime between the Fabry-Perot and the Kondo limits. Using ultra-high quality nanotube devices, we study how the conductance oscillates whe
The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to
In-situ Raman experiments together with transport measurements have been carried out on carbon nanotubes as a function of gate voltage. In metallic tubes, a large increase in the Raman frequency of the $G^-$ band, accompanied by a substantial decreas