ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism of Covalently Functionalized Carbon Nanotubes

126   0   0.0 ( 0 )
 نشر من قبل Elton Jose Santos
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the electronic structure of carbon nanotubes functionalized by adsorbates anchored with single C-C covalent bonds. We find that, despite the particular adsorbate, a spin moment with a universal value of 1.0 $mu_B$ per molecule is induced at low coverage. Therefore, we propose a mechanism of bonding-induced magnetism at the carbon surface. The adsorption of a single molecule creates a dispersionless defect state at the Fermi energy, which is mainly localized in the carbon wall and presents a small contribution from the adsorbate. This universal spin moment is fairly independent of the coverage as long as all the molecules occupy the same graphenic sublattice. The magnetic coupling between adsorbates is also studied and reveals a key dependence on the graphenic sublattice adsorption site.



قيم البحث

اقرأ أيضاً

We use DFT to study the effect of molecular adsorbates on the conductance of metallic carbon nanotubes. The five molecules considered (NO2, NH2, H, COOH, OH) lead to similar scattering of the electrons. The adsorption of a single molecule suppresses one of the two available channels of the CNT at low bias conductance. If more molecules are adsorbed on the same sublattice, the remaining open channel can be blocked or not, depending on the relative position of the adsorbates. If a simple geometric condition is fulfilled this channel is still open, even after adsorbing an arbitrary number of molecules.
106 - Z. X. Guo , J. W. Ding , Y. Xiao 2007
In terms of lattice dynamics theory, we study the vibrational properties of the oxygen-functionalized single wall carbon nanotubes (O-SWCNs). Due to the C-O and O-O interactions, many degenerate phonon modes are split and even some new phonon modes a re obtained, different from the bare SWCNs. A distinct Raman shift is found in both the radial breathing mode and G modes, depending not only on the tube diameter and chirality but also on oxygen coverage and adsorption configurations. With the oxygen coverage increasing, interesting, a nonmonotonic up- and down-shift is observed in G modes, which is contributed to the competition between the bond expansion and contraction, there coexisting in the functionalized carbon nanotube.
We present a chemical route to covalently couple the photosystem I (PS I) to carbon nanotubes (CNTs). Small linker molecules are used to connect the PS I to the CNTs. Hybrid systems, consisting of CNTs and the PS I, promise new photo-induced transpor t phenomena due to the outstanding optoelectronic properties of the robust cyanobacteria membrane protein PS I.
Using density-functional calculations, we study the effect of sp$^3$-type defects created by different covalent functionalizations on the electronic and magnetic properties of graphene. We find that the induced magnetic properties are {it universal}, in the sense that they are largely independent on the particular adsorbates considered. When a weakly-polar single covalent bond is established with the layer, a local spin-moment of 1.0 $mu_B$ always appears in graphene. This effect is similar to that of H adsorption, which saturates one $p_z$ orbital in the carbon layer. The magnetic couplings between the adsorbates show a strong dependence on the graphene sublattice of chemisorption. Molecules adsorbed at the same sublattice couple ferromagnetically, with an exchange interaction that decays very slowly with distance, while no magnetism is found for adsorbates at opposite sublattices. Similar magnetic properties are obtained if several $p_z$ orbitals are saturated simultaneously by the adsorption of a large molecule. These results might open new routes to engineer the magnetic properties of graphene derivatives by chemical means.
The interface of two dissimilar materials is well known for surprises in condensed matter, and provides avenues for rich physics as well as seeds for future technological advancements. We present some exciting magnetization (M) and remnant magnetizat ion ($mu$) results, which conclusively arise at the interface of two highly functional materials, namely the graphitic shells of a carbon nanotube (CNT) and $alpha$-Fe$_2$O$_3$, a Dzyaloshinskii-Moriya Interaction (DMI) driven weak ferromagnet (WFM) and piezomagnet (PzM). We show that the encapsulation inside CNT leads to a very significant enhancement in M and correspondingly in $mu$, a time- stable part of the remanence, exclusive to the WFM phase. Up to 70% of in-field magnetization is retained in the form of $mu$ at the room temperature. Lattice parameter of CNT around the Morin transition of the encapsulate exhibits a clear anomaly, confirming the novel interface effects. Control experiments on bare $alpha$-Fe$_2$O$_3$ nanowires bring into fore that the weak ferromagnets such as $alpha$-Fe$_2$O$_3$ as are not as weak, as far as their remanence and its stability with time is concerned, and encapsulation inside CNT leads to a substantial enhancement in these functionalities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا