ﻻ يوجد ملخص باللغة العربية
We have recently established that a number of Dzyaloshinskii-Moriya interaction driven canted antiferromagnets or weak ferrromagnets (WFM) including hematite exhibit an ultra-slow magnetization relaxation phenomenon, leading to the observation of a time-stable remanence (Phys. Rev. B 96, 104422 (2017)). In this work, our endeavor is to optimize the magnitude of this time-stable remanence for the hematite crystallites, as a function of shape size and morphology. A substantial enhancement in the magnitude of this unique remanence is observed in porous hematite, consisting of ultra-small nano particles, as compared to crystallites grown in regular morphology, such as cuboids or hexagonal plates. This time-stable remanence exhibits a peak-like pattern with magnetic field, which is significantly sharper in porous sample. The extent and the magnitude of the spin canting associated with the WFM phase can be best gauged by the presence of this remanence and its unusual magnetic field dependence. Temperature variation of lattice parameters bring out correlations between strain effects that alter the bond length and bond angle associated with primary super exchange paths, which in-turn systematically alter the magnitude of the time-stable remanence. This study provides insights regarding a long standing problems of anomalies in the magnitude of magnetization on repeated cooling in case of hematite. Our data caps on these anomalies, which we argue, arise due to spontaneous spin canting associated with WFM phase. Our results also elucidate on why thermal cycling protocols during bulk magnetization measurements are even more crucial for hematite which exhibits both canted as well as pure antiferromgnetic phase.
The interface of two dissimilar materials is well known for surprises in condensed matter, and provides avenues for rich physics as well as seeds for future technological advancements. We present some exciting magnetization (M) and remnant magnetizat
We explore remanent magnetization ($mu$) as a function of time and temperature, in a variety of rhombohedral antiferromagnets (AFM) which are also weak ferromagnets (WFM) and piezomagnets (PzM). These measurements, across samples with length scales r
We investigate a model of excitonic ordering (i.e electron-hole pair condensation) appropriate for the divalent hexaborides. We show that the inclusion of imperfectly nested electron hole Fermi surfaces can lead to the formation of an undoped exciton
Magnetization and neutron diffraction measurements indicate long-range antiferromagnetic ordering below TN=4 K in the 2D, S=1/2 Heisenberg antiferromagnet K2V3O8. The ordered state exhibits ``weak ferromagnetism and novel, field-induced spin reorient
Weak itinerant ferromagnetism in YCo9Si4 below about 25 K is studied by means of magnetisation, specific heat, and resistivity measurements. Single crystal X-ray Rietveld refinements at room temperature reveal a fully ordered distribution of Y, Co an