ﻻ يوجد ملخص باللغة العربية
The strong coupling constant is an important parameter which can help us to understand the strong decay behaviors of baryons. In our previous work, we have analyzed strong vertices $Sigma_{c}^{*}ND$, $Sigma_{b}^{*}NB$, $Sigma_{c}ND$, $Sigma_{b}NB$ in QCD sum rules. Following these work, we further analyze the strong vertices $Sigma_{c}ND^{*}$ and $Sigma_{b}NB^{*}$ using the three-point QCD sum rules under Dirac structures $q!!!/p!!!/gamma_{alpha}$ and $q!!!/p!!!/p_{alpha}$. In this work, we first calculate strong form factors considering contributions of the perturbative part and the condensate terms $langleoverline{q}qrangle$, $langlefrac{alpha_{s}}{pi}GGrangle$ and $langleoverline{q}g_{s}sigma Gqrangle$. Then, these form factors are used to fit into analytical functions. According to these functions, we finally determine the values of the strong coupling constants for these two vertices $Sigma_{c}ND^{*}$ and $Sigma_{b}NB^{*}$.
In this article, we study the strong interaction of the vertexes $Sigma_bNB$ and $Sigma_c ND$ using the three-point QCD sum rules under two different dirac structures. Considering the contributions of the vacuum condensates up to dimension $5$ in the
In this article, the tensor-vector-pseudoscalar type of vertex is analyzed with the QCD sum rules and the local-QCD sum rules. Correspondingly, the hadronic coupling constants of D2*(2460), Ds2*(2573), B2*(5747) and Bs2*(5840), and their decay widths
In this article, we analyze the strong vertexes $Sigma_{c}^{*}ND$ and $Sigma_{b}^{*}NB$ using the three-point QCD sum rules under the Dirac structure of $q!!!/p!!!/gamma_{mu}$. We perform our analysis by considering the contributions of the perturbat
The form factors and the coupling constant of the $B_s B^* K $ and $B_s B K^*$ vertices are calculated using the QCD sum rules method. Three point correlation functions are computed considering both the heavy and light mesons off-shell in each vertex
We study $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ molecular states as mixed states in QCD sum rules. By calculating the two-point correlation functions of pure states of their corresponding currents, we review the mass and coupling constant predictions