ﻻ يوجد ملخص باللغة العربية
The form factors and the coupling constant of the $B_s B^* K $ and $B_s B K^*$ vertices are calculated using the QCD sum rules method. Three point correlation functions are computed considering both the heavy and light mesons off-shell in each vertex, from which, after an extrapolation of the QCDSR results at the pole of the off-shell mesons, we obtain the coupling constant of the vertex. The form factors obtained have different behaviors but their simultaneous extrapolation reach the same value of the coupling constant $g_{B_s B^* K}=8.41 pm 1.23 $ and $g_{B_s BK^*}=3.3 pm 0.5$. We compare our result with other theoretical estimates and compute the uncertainties of the method.
Finite energy QCD sum rules with Legendre polynomial integration kernels are used to determine the heavy meson decay constant $f_{B_c}$, and revisit $f_B$ and $f_{B_s}$. Results exhibit excellent stability in a wide range of values of the integration
The decay bar B -> bar K* (-> bar K pi) l+ l- offers great opportunities to explore the physics at and above the electroweak scale by means of an angular analysis. We investigate the physics potential of the seven CP asymmetries plus the asymmetry in
We evaluate the mass of the $B_{s0}$ scalar meson and the coupling constant in the $B_{s0} B K$ vertex in the framework of QCD sum rules. We consider the $B_{s0}$ as a tetraquark state to evaluate its mass. We get $m_{B_s0}=(6.04pm 0.08) GeV$, which
We use QCD sum rules to compute matrix elements of the Delta B=2 operators appearing in the heavy-quark expansion of the width difference of the B_s mass eigenstates. Our analysis includes the leading-order operators Q and Q_S, as well as the sublead
Using special linear combinations of finite energy sum rules which minimize the contribution of the unknown continuum spectral function, we compute the decay constants of the pseudoscalar mesons B and B_s. In the computation, we employ the recent thr