ﻻ يوجد ملخص باللغة العربية
In this article, we analyze the strong vertexes $Sigma_{c}^{*}ND$ and $Sigma_{b}^{*}NB$ using the three-point QCD sum rules under the Dirac structure of $q!!!/p!!!/gamma_{mu}$. We perform our analysis by considering the contributions of the perturbative part and the condensate terms of $<overline{q}q>$ and $<frac{alpha_{s}}{pi}GG>$. After the form factors are calculated, they are then fitted into analytical functions which are used to get the strong coupling constants for these two vertexes. The final results are $g_{Sigma_{c}^{*}ND}=7.19^{+8.49}_{-3.11}pm1.76$ and $g_{Sigma_{b}^{*}NB}=10.54^{+15.59}_{-5.23}pm1.82$.
In this article, we study the strong interaction of the vertexes $Sigma_bNB$ and $Sigma_c ND$ using the three-point QCD sum rules under two different dirac structures. Considering the contributions of the vacuum condensates up to dimension $5$ in the
The strong coupling constant is an important parameter which can help us to understand the strong decay behaviors of baryons. In our previous work, we have analyzed strong vertices $Sigma_{c}^{*}ND$, $Sigma_{b}^{*}NB$, $Sigma_{c}ND$, $Sigma_{b}NB$ in
In this article, the tensor-vector-pseudoscalar type of vertex is analyzed with the QCD sum rules and the local-QCD sum rules. Correspondingly, the hadronic coupling constants of D2*(2460), Ds2*(2573), B2*(5747) and Bs2*(5840), and their decay widths
We study $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ molecular states as mixed states in QCD sum rules. By calculating the two-point correlation functions of pure states of their corresponding currents, we review the mass and coupling constant predictions
In the framework of three-point QCD sum rules, the form factors for the semileptonic decays of B_c^+ -> B_s(B_s^*) l u are calculated with account for the Coulomb-like alpha_s/v-corrections in the heavy quarkonium. The generalized relations due to t