ﻻ يوجد ملخص باللغة العربية
Time-continuous emotion prediction has become an increasingly compelling task in machine learning. Considerable efforts have been made to advance the performance of these systems. Nonetheless, the main focus has been the development of more sophisticated models and the incorporation of different expressive modalities (e. g., speech, face, and physiology). In this paper, motivated by the benefit of difficulty awareness in a human learning procedure, we propose a novel machine learning framework, namely, Dynamic Difficulty Awareness Training (DDAT), which sheds fresh light on the research -- directly exploiting the difficulties in learning to boost the machine learning process. The DDAT framework consists of two stages: information retrieval and information exploitation. In the first stage, we make use of the reconstruction error of input features or the annotation uncertainty to estimate the difficulty of learning specific information. The obtained difficulty level is then used in tandem with original features to update the model input in a second learning stage with the expectation that the model can learn to focus on high difficulty regions of the learning process. We perform extensive experiments on a benchmark database (RECOLA) to evaluate the effectiveness of the proposed framework. The experimental results show that our approach outperforms related baselines as well as other well-established time-continuous emotion prediction systems, which suggests that dynamically integrating the difficulty information for neural networks can help enhance the learning process.
We introduce the framework of continuous-depth graph neural networks (GNNs). Neural graph differential equations (Neural GDEs) are formalized as the counterpart to GNNs where the input-output relationship is determined by a continuum of GNN layers, b
The data scarcity problem in Electroencephalography (EEG) based affective computing results into difficulty in building an effective model with high accuracy and stability using machine learning algorithms especially deep learning models. Data augmen
The research on human emotion under multimedia stimulation based on physiological signals is an emerging field, and important progress has been achieved for emotion recognition based on multi-modal signals. However, it is challenging to make full use
Deep reinforcement learning has achieved significant success in many decision-making tasks in various fields. However, it requires a large training time of dense neural networks to obtain a good performance. This hinders its applicability on low-reso
Transformers have proved effective in many NLP tasks. However, their training requires non-trivial efforts regarding designing cutting-edge optimizers and learning rate schedulers carefully (e.g., conventional SGD fails to train Transformers effectiv