ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Sparse Training for Deep Reinforcement Learning

90   0   0.0 ( 0 )
 نشر من قبل Ghada Sokar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep reinforcement learning has achieved significant success in many decision-making tasks in various fields. However, it requires a large training time of dense neural networks to obtain a good performance. This hinders its applicability on low-resource devices where memory and computation are strictly constrained. In a step towards enabling deep reinforcement learning agents to be applied to low-resource devices, in this work, we propose for the first time to dynamically train deep reinforcement learning agents with sparse neural networks from scratch. We adopt the evolution principles of dynamic sparse training in the reinforcement learning paradigm and introduce a training algorithm that optimizes the sparse topology and the weight values jointly to dynamically fit the incoming data. Our approach is easy to be integrated into existing deep reinforcement learning algorithms and has many favorable advantages. First, it allows for significant compression of the network size which reduces the memory and computation costs substantially. This would accelerate not only the agent inference but also its training process. Second, it speeds up the agent learning process and allows for reducing the number of required training steps. Third, it can achieve higher performance than training the dense counterpart network. We evaluate our approach on OpenAI gym continuous control tasks. The experimental results show the effectiveness of our approach in achieving higher performance than one of the state-of-art baselines with a 50% reduction in the network size and floating-point operations (FLOPs). Moreover, our proposed approach can reach the same performance achieved by the dense network with a 40-50% reduction in the number of training steps.

قيم البحث

اقرأ أيضاً

Deep reinforcement learning (DRL) has shown remarkable success in sequential decision-making problems but suffers from a long training time to obtain such good performance. Many parallel and distributed DRL training approaches have been proposed to s olve this problem, but it is difficult to utilize them on resource-limited devices. In order to accelerate DRL in real-world edge devices, memory bandwidth bottlenecks due to large weight transactions have to be resolved. However, previous iterative pruning not only shows a low compression ratio at the beginning of training but also makes DRL training unstable. To overcome these shortcomings, we propose a novel weight compression method for DRL training acceleration, named group-sparse training (GST). GST selectively utilizes block-circulant compression to maintain a high weight compression ratio during all iterations of DRL training and dynamically adapt target sparsity through reward-aware pruning for stable training. Thanks to the features, GST achieves a 25 %p $sim$ 41.5 %p higher average compression ratio than the iterative pruning method without reward drop in Mujoco Halfcheetah-v2 and Mujoco humanoid-v2 environment with TD3 training.
The success of deep learning in the computer vision and natural language processing communities can be attributed to training of very deep neural networks with millions or billions of parameters which can then be trained with massive amounts of data. However, similar trend has largely eluded training of deep reinforcement learning (RL) algorithms where larger networks do not lead to performance improvement. Previous work has shown that this is mostly due to instability during training of deep RL agents when using larger networks. In this paper, we make an attempt to understand and address training of larger networks for deep RL. We first show that naively increasing network capacity does not improve performance. Then, we propose a novel method that consists of 1) wider networks with DenseNet connection, 2) decoupling representation learning from training of RL, 3) a distributed training method to mitigate overfitting problems. Using this three-fold technique, we show that we can train very large networks that result in significant performance gains. We present several ablation studies to demonstrate the efficacy of the proposed method and some intuitive understanding of the reasons for performance gain. We show that our proposed method outperforms other baseline algorithms on several challenging locomotion tasks.
89 - Huihui Zhang , Wu Huang 2020
In recent years deep neural networks have been successfully applied to the domains of reinforcement learning cite{bengio2009learning,krizhevsky2012imagenet,hinton2006reducing}. Deep reinforcement learning cite{mnih2015human} is reported to have the a dvantage of learning effective policies directly from high-dimensional sensory inputs over traditional agents. However, within the scope of the literature, there is no fundamental change or improvement on the existing training framework. Here we propose a novel training framework that is conceptually comprehensible and potentially easy to be generalized to all feasible algorithms for reinforcement learning. We employ Monte-carlo sampling to achieve raw data inputs, and train them in batch to achieve Markov decision process sequences and synchronously update the network parameters instead of experience replay. This training framework proves to optimize the unbiased approximation of loss function whose estimation exactly matches the real probability distribution data inputs follow, and thus have overwhelming advantages of sample efficiency and convergence rate over existing deep reinforcement learning after evaluating it on both discrete action spaces and continuous control problems. Besides, we propose several algorithms embedded with our new framework to deal with typical discrete and continuous scenarios. These algorithms prove to be far more efficient than their origin
136 - Kaiqi Chen , Yong Lee , Harold Soh 2021
This work focuses on learning useful and robust deep world models using multiple, possibly unreliable, sensors. We find that current methods do not sufficiently encourage a shared representation between modalities; this can cause poor performance on downstream tasks and over-reliance on specific sensors. As a solution, we contribute a new multi-modal deep latent state-space model, trained using a mutual information lower-bound. The key innovation is a specially-designed density ratio estimator that encourages consistency between the latent codes of each modality. We tasked our method to learn policies (in a self-supervised manner) on multi-modal Natural MuJoCo benchmarks and a challenging Table Wiping task. Experiments show our method significantly outperforms state-of-the-art deep reinforcement learning methods, particularly in the presence of missing observations.
Recent researches show that machine learning has the potential to learn better heuristics than the one designed by human for solving combinatorial optimization problems. The deep neural network is used to characterize the input instance for construct ing a feasible solution incrementally. Recently, an attention model is proposed to solve routing problems. In this model, the state of an instance is represented by node features that are fixed over time. However, the fact is, the state of an instance is changed according to the decision that the model made at different construction steps, and the node features should be updated correspondingly. Therefore, this paper presents a dynamic attention model with dynamic encoder-decoder architecture, which enables the model to explore node features dynamically and exploit hidden structure information effectively at different construction steps. This paper focuses on a challenging NP-hard problem, vehicle routing problem. The experiments indicate that our model outperforms the previous methods and also shows a good generalization performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا