ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner

83   0   0.0 ( 0 )
 نشر من قبل Sao Mai Nguyen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an active learning architecture for robots, capable of organizing its learning process to achieve a field of complex tasks by learning sequences of motor policies, called Intrinsically Motivated Procedure Babbling (IM-PB). The learner can generalize over its experience to continuously learn new tasks. It chooses actively what and how to learn based by empirical measures of its own progress. In this paper, we are considering the learning of a set of interrelated tasks outcomes hierarchically organized. We introduce a framework called procedures, which are sequences of policies defined by the combination of previously learned skills. Our algorithmic architecture uses the procedures to autonomously discover how to combine simple skills to achieve complex goals. It actively chooses between 2 strategies of goal-directed exploration : exploration of the policy space or the procedural space. We show on a simulated environment that our new architecture is capable of tackling the learning of complex motor policies, to adapt the complexity of its policies to the task at hand. We also show that our procedures framework helps the learner to tackle difficult hierarchical tasks.

قيم البحث

اقرأ أيضاً

Combining model-based and model-free learning systems has been shown to improve the sample efficiency of learning to perform complex robotic tasks. However, dual-system approaches fail to consider the reliability of the learned model when it is appli ed to make multiple-step predictions, resulting in a compounding of prediction errors and performance degradation. In this paper, we present a novel dual-system motor learning approach where a meta-controller arbitrates online between model-based and model-free decisions based on an estimate of the local reliability of the learned model. The reliability estimate is used in computing an intrinsic feedback signal, encouraging actions that lead to data that improves the model. Our approach also integrates arbitration with imagination where a learned latent-space model generates imagined experiences, based on its local reliability, to be used as additional training data. We evaluate our approach against baseline and state-of-the-art methods on learning vision-based robotic grasping in simulation and real world. The results show that our approach outperforms the compared methods and learns near-optimal grasping policies in dense- and sparse-reward environments.
In vision-based reinforcement learning (RL) tasks, it is prevalent to assign the auxiliary task with a surrogate self-supervised loss so as to obtain more semantic representations and improve sample efficiency. However, abundant information in self-s upervised auxiliary tasks has been disregarded, since the representation learning part and the decision-making part are separated. To sufficiently utilize information in the auxiliary task, we present a simple yet effective idea to employ self-supervised loss as an intrinsic reward, called Intrinsically Motivated Self-Supervised learning in Reinforcement learning (IM-SSR). We formally show that the self-supervised loss can be decomposed as exploration for novel states and robustness improvement from nuisance elimination. IM-SSR can be effortlessly plugged into any reinforcement learning with self-supervised auxiliary objectives with nearly no additional cost. Combined with IM-SSR, the previous underlying algorithms achieve salient improvements on both sample efficiency and generalization in various vision-based robotics tasks from the DeepMind Control Suite, especially when the reward signal is sparse.
In this paper, we present results from a human-subject study designed to explore two facets of human mental models of robots---inferred capability and intention---and their relationship to overall trust and eventual decisions. In particular, we exami ne delegation situations characterized by uncertainty, and explore how inferred capability and intention are applied across different tasks. We develop an online survey where human participants decide whether to delegate control to a simulated UAV agent. Our study shows that human estimations of robot capability and intent correlate strongly with overall self-reported trust. However, overall trust is not independently sufficient to determine whether a human will decide to trust (delegate) a given task to a robot. Instead, our study reveals that estimations of robot intention, capability, and overall trust are integrated when deciding to delegate. From a broader perspective, these results suggest that calibrating overall trust alone is insufficient; to make correct decisions, humans need (and use) multi-faceted mental models when collaborating with robots across multiple contexts.
Reinforcement learning algorithms rely on exploration to discover new behaviors, which is typically achieved by following a stochastic policy. In continuous control tasks, policies with a Gaussian distribution have been widely adopted. Gaussian explo ration however does not result in smooth trajectories that generally correspond to safe and rewarding behaviors in practical tasks. In addition, Gaussian policies do not result in an effective exploration of an environment and become increasingly inefficient as the action rate increases. This contributes to a low sample efficiency often observed in learning continuous control tasks. We introduce a family of stationary autoregressive (AR) stochastic processes to facilitate exploration in continuous control domains. We show that proposed processes possess two desirable features: subsequent process observations are temporally coherent with continuously adjustable degree of coherence, and the process stationary distribution is standard normal. We derive an autoregressive policy (ARP) that implements such processes maintaining the standard agent-environment interface. We show how ARPs can be easily used with the existing off-the-shelf learning algorithms. Empirically we demonstrate that using ARPs results in improved exploration and sample efficiency in both simulated and real world domains, and, furthermore, provides smooth exploration trajectories that enable safe operation of robotic hardware.
Collective motion is found in various animal systems, active suspensions and robotic or virtual agents. This is often understood using high level models that directly encode selected empirical features, such as co-alignment and cohesion. Can these fe atures be shown to emerge from an underlying, low-level principle? We find that they emerge naturally under Future State Maximisation (FSM). Here agents perceive a visual representation of the world around them, such as might be recorded on a simple retina, and then move to maximise the number of different visual environments that they expect to be able to access in the future. Such a control principle may confer evolutionary fitness in an uncertain world by enabling agents to deal with a wide variety of future scenarios. The collective dynamics that spontaneously emerge under FSM resemble animal systems in several qualitative aspects, including cohesion, co-alignment and collision suppression, none of which are explicitly encoded in the model. A multi-layered neural network trained on simulated trajectories is shown to represent a heuristic mimicking FSM. Similar levels of reasoning would seem to be accessible under animal cognition, demonstrating a possible route to the emergence of collective motion in social animals directly from the control principle underlying FSM. Such models may also be good candidates for encoding into possible future realisations of artificial intelligent matter, able to sense light, process information and move.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا