ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsically motivated collective motion

151   0   0.0 ( 0 )
 نشر من قبل Matthew Turner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collective motion is found in various animal systems, active suspensions and robotic or virtual agents. This is often understood using high level models that directly encode selected empirical features, such as co-alignment and cohesion. Can these features be shown to emerge from an underlying, low-level principle? We find that they emerge naturally under Future State Maximisation (FSM). Here agents perceive a visual representation of the world around them, such as might be recorded on a simple retina, and then move to maximise the number of different visual environments that they expect to be able to access in the future. Such a control principle may confer evolutionary fitness in an uncertain world by enabling agents to deal with a wide variety of future scenarios. The collective dynamics that spontaneously emerge under FSM resemble animal systems in several qualitative aspects, including cohesion, co-alignment and collision suppression, none of which are explicitly encoded in the model. A multi-layered neural network trained on simulated trajectories is shown to represent a heuristic mimicking FSM. Similar levels of reasoning would seem to be accessible under animal cognition, demonstrating a possible route to the emergence of collective motion in social animals directly from the control principle underlying FSM. Such models may also be good candidates for encoding into possible future realisations of artificial intelligent matter, able to sense light, process information and move.



قيم البحث

اقرأ أيضاً

We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by no n-equilibrium cluster formation is detected for a critical cell packing fraction around 17%. This transition is characterized by a scale-free power-law cluster size distribution, with an exponent $0.88pm0.07$, and the appearance of giant number fluctuations. Our findings are in quantitative agreement with simulations of self-propelled rods. This suggests that the interplay of self-propulsion of bacteria and the rod-shape of bacteria is sufficient to induce collective motion.
We study the Brownian motion of an assembly of mobile inclusions embedded in a fluid membrane. The motion includes the dispersal of the assembly, accompanied by the diffusion of its center of mass. Usually, the former process is much faster than the latter, since the diffusion coefficient of the center of mass is inversely proportional to the number of particles. However, in the case of membrane inclusions, we find that the two processes occur on the same time scale, thus prolonging significantly the lifetime of the assembly as a collectively moving object. This effect is caused by the quasi-two-dimensional membrane flows, which couple the motions even of the most remote inclusions in the assembly. The same correlations also cause the diffusion coefficient of the center of mass to decay slowly with time, resulting in weak sub-diffusion. We confirm our analytical results by Brownian dynamics simulations with flow-mediated correlations. The effect reported here should have implications for the stability of nano-scale membrane heterogeneities.
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occ urs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.
A simple flashing ratchet model in two dimensions is proposed to simulate the hand-over-hand motion of two head molecular motors like kinesin. Extensive Langevin simulations of the model are performed. Good qualitative agreement with the expected beh avior is observed. We discuss different regimes of motion and efficiency depending of model parameters.
An individuals reaction time data to visual stimuli have usually been represented in Experimental Psychology by means of an ex-Gaussian function (EGF). In most previous works, researchers have mainly aimed at finding a meaning for the parameters of t he EGF function in relation to psychological phenomena. We will focus on interpreting the reaction times (RTs) of a group of individuals rather than a single persons RT, which is relevant for the different contexts of social sciences. In doing so, the same model as for the Ideal Gases (IG) (an inanimate system of non-interacting particles) emerges from the experimental RT data. Both systems are characterised by a collective parameter which is k_BT in the case of the system of particles and what we have called life span parameter for the system of brains. Similarly, we came across a Maxwell-Boltzmann-type distribution for the system of brains which provides a natural and more complete characterisation of the collective time response than has ever been provided before. Thus, we are able to know about the behaviour of a single individual in relation to the coetaneous group to which they belong and through the application of a physical law. This leads to a new entropy-based methodology for the classification of the individuals forming the system which emerges from the physical law governing the system of brains. To the best of our knowledge, this is the first work in the literature reporting on the emergence of a physical theory (IG) from human RT experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا