ﻻ يوجد ملخص باللغة العربية
Collective motion is found in various animal systems, active suspensions and robotic or virtual agents. This is often understood using high level models that directly encode selected empirical features, such as co-alignment and cohesion. Can these features be shown to emerge from an underlying, low-level principle? We find that they emerge naturally under Future State Maximisation (FSM). Here agents perceive a visual representation of the world around them, such as might be recorded on a simple retina, and then move to maximise the number of different visual environments that they expect to be able to access in the future. Such a control principle may confer evolutionary fitness in an uncertain world by enabling agents to deal with a wide variety of future scenarios. The collective dynamics that spontaneously emerge under FSM resemble animal systems in several qualitative aspects, including cohesion, co-alignment and collision suppression, none of which are explicitly encoded in the model. A multi-layered neural network trained on simulated trajectories is shown to represent a heuristic mimicking FSM. Similar levels of reasoning would seem to be accessible under animal cognition, demonstrating a possible route to the emergence of collective motion in social animals directly from the control principle underlying FSM. Such models may also be good candidates for encoding into possible future realisations of artificial intelligent matter, able to sense light, process information and move.
We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by no
We study the Brownian motion of an assembly of mobile inclusions embedded in a fluid membrane. The motion includes the dispersal of the assembly, accompanied by the diffusion of its center of mass. Usually, the former process is much faster than the
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occ
A simple flashing ratchet model in two dimensions is proposed to simulate the hand-over-hand motion of two head molecular motors like kinesin. Extensive Langevin simulations of the model are performed. Good qualitative agreement with the expected beh
An individuals reaction time data to visual stimuli have usually been represented in Experimental Psychology by means of an ex-Gaussian function (EGF). In most previous works, researchers have mainly aimed at finding a meaning for the parameters of t