ﻻ يوجد ملخص باللغة العربية
A rainbow $q$-coloring of a $k$-uniform hypergraph is a $q$-coloring of the vertex set such that every hyperedge contains all $q$ colors. We prove that given a rainbow $(k - 2lfloor sqrt{k}rfloor)$-colorable $k$-uniform hypergraph, it is NP-hard to find a normal $2$-coloring. Previously, this was only known for rainbow $lfloor k/2 rfloor$-colorable hypergraphs (Guruswami and Lee, SODA 2015). We also study a generalization which we call rainbow $(q, p)$-coloring, defined as a coloring using $q$ colors such that every hyperedge contains at least $p$ colors. We prove that given a rainbow $(k - lfloor sqrt{kc} rfloor, k- lfloor3sqrt{kc} rfloor)$-colorable $k$ uniform hypergraph, it is NP-hard to find a normal $c$-coloring for any $c = o(k)$. The proof of our second result relies on two combinatorial theorems. One of the theorems was proved by Sarkaria (J. Comb. Theory. 1990) using topological methods and the other theorem we prove using a generalized Borsuk-Ulam theorem.
We reprove the results on the hardness of approximating hypergraph coloring using a different technique based on bounds on the size of extremal $t$-agreeing families of $[q]^n$. Specifically, using theorems of Frankl-Tokushige [FT99], Ahlswede-Khacha
The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order $sigma$, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering $sigma$, i.e.
We study the problem of computing the $prightarrow q$ norm of a matrix $A in R^{m times n}$, defined as [ |A|_{prightarrow q} ~:=~ max_{x ,in, R^n setminus {0}} frac{|Ax|_q}{|x|_p} ] This problem generalizes the spectral norm of a matrix ($p=q=2$) an
Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let $operatorname{rb-index}(S)$ denote the smallest size of a perfect rain
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value $thr(v)$ for any vertex $v$ of the graph, find a minimum size vertex-subset to activate s.t. all the vertices of the graph are activated at the end of th