ترغب بنشر مسار تعليمي؟ اضغط هنا

Simplified inpproximability of hypergraph coloring via t-agreeing families

160   0   0.0 ( 0 )
 نشر من قبل Aditya Potukuchi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We reprove the results on the hardness of approximating hypergraph coloring using a different technique based on bounds on the size of extremal $t$-agreeing families of $[q]^n$. Specifically, using theorems of Frankl-Tokushige [FT99], Ahlswede-Khachatrian [AK98] and Frankl [F76] on the size of such families, we give simple and unified proofs of quasi NP-hardness of the following problems: $bullet$ coloring a $3$ colorable $4$-uniform hypergraph with $(log n)^delta$ many colors $bullet$ coloring a $3$ colorable $3$-uniform hypergraph with $tilde{O}(sqrt{log log n})$ many colors $bullet$ coloring a $2$ colorable $6$-uniform hypergraph with $(log n)^delta$ many colors $bullet$ coloring a $2$ colorable $4$-uniform hypergraph with $tilde{O}(sqrt{log log n})$ many colors where $n$ is the number of vertices of the hypergraph and $delta>0$ is a universal constant.

قيم البحث

اقرأ أيضاً

A rainbow $q$-coloring of a $k$-uniform hypergraph is a $q$-coloring of the vertex set such that every hyperedge contains all $q$ colors. We prove that given a rainbow $(k - 2lfloor sqrt{k}rfloor)$-colorable $k$-uniform hypergraph, it is NP-hard to find a normal $2$-coloring. Previously, this was only known for rainbow $lfloor k/2 rfloor$-colorable hypergraphs (Guruswami and Lee, SODA 2015). We also study a generalization which we call rainbow $(q, p)$-coloring, defined as a coloring using $q$ colors such that every hyperedge contains at least $p$ colors. We prove that given a rainbow $(k - lfloor sqrt{kc} rfloor, k- lfloor3sqrt{kc} rfloor)$-colorable $k$ uniform hypergraph, it is NP-hard to find a normal $c$-coloring for any $c = o(k)$. The proof of our second result relies on two combinatorial theorems. One of the theorems was proved by Sarkaria (J. Comb. Theory. 1990) using topological methods and the other theorem we prove using a generalized Borsuk-Ulam theorem.
The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order $sigma$, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering $sigma$, i.e. , the maximum number of colors that the first-fit coloring requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring has been examined for its structural and algorithmic aspects. A brute-force $f(k)n^{2^{k-1}}$-time algorithm for Grundy Coloring on general graphs is not difficult to obtain, where $k$ is the number of colors required by the most adversarial vertex ordering. It was asked several times whether the dependency on $k$ in the exponent of $n$ can be avoided or reduced, and its answer seemed elusive until now. We prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal under the Exponential Time Hypothesis, thus settling this question by the negative. The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open question by Panolan et al. [JCSS 17]. A natural follow-up question is, how the parameterized complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability on $K_{t,t}$-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward answering this question. The key combinatorial lemma underlying the tractability result might be of independent interest.
145 - Vance Faber 2016
Motivated by the Erdos-Faber Lovasz conjecture (EFL) for hypergraphs, we explore relationships between several conjectures on the edge coloring of linear hypergraphs. In particular, we are able to increase the class of hypergraphs for which EFL is true.
The isomorphism problem is known to be efficiently solvable for interval graphs, while for the larger class of circular-arc graphs its complexity status stays open. We consider the intermediate class of intersection graphs for families of circular ar cs that satisfy the Helly property. We solve the isomorphism problem for this class in logarithmic space. If an input graph has a Helly circular-arc model, our algorithm constructs it canonically, which means that the models constructed for isomorphic graphs are equal.
We construct an explicit family of 3XOR instances which is hard for $O(sqrt{log n})$ levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in determin istic polynomial time. Our construction is based on the high-dimensional expanders devised by Lubotzky, Samuels and Vishne, known as LSV complexes or Ramanujan complexes, and our analysis is based on two notions of expansion for these complexes: cosystolic expansion, and a local isoperimetric inequality due to Gromov. Our construction offers an interesting contrast to the recent work of Alev, Jeronimo and the last author~(FOCS 2019). They showed that 3XOR instances in which the variables correspond to vertices in a high-dimensional expander are easy to solve. In contrast, in our instances the variables correspond to the edges of the complex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا