ترغب بنشر مسار تعليمي؟ اضغط هنا

Vanishing Theorem for the de Rham Complex of Unitary Local System

144   0   0.0 ( 0 )
 نشر من قبل Hongshan Li
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Hongshan Li




اسأل ChatGPT حول البحث

We will prove a Kodaira-Nakano type of vanishing theorem for the logarithmic de Rham complex of unitary local system. We will then study the weight filtration on the logarithmic de Rham complex, and prove a stronger statement for the associated graded complex.



قيم البحث

اقرأ أيضاً

125 - Mao Sheng , Zebao Zhang 2019
We establish a positive characteristic analogue of intersection cohomology for polarized variations of Hodge structure. This includes: a) the decomposition theorem for the intersection de Rham complex; b) the $E_1$-degeneration theorem for the inters ection de Rham complex of a periodic de Rham bundle: c) the Kodaira vanishing theorem for the intersection cohomology groups of a periodic Higgs bundle.
152 - Vadim Schechtman 2015
We introduce a notion of the De Rham complex of a Gerstenhaber algebra which produces a notion of a quasi-BV structure, and allows to classify these structures, generalizing the classical results for polyvector fields.
Over any smooth algebraic variety over a $p$-adic local field $k$, we construct the de Rham comparison isomorphisms for the etale cohomology with partial compact support of de Rham $mathbb Z_p$-local systems, and show that they are compatible with Po incare duality and with the canonical morphisms among such cohomology. We deduce these results from their analogues for rigid analytic varieties that are Zariski open in some proper smooth rigid analytic varieties over $k$. In particular, we prove finiteness of etale cohomology with partial compact support of any $mathbb Z_p$-local systems, and establish the Poincare duality for such cohomology after inverting $p$.
Let $X$ be a closed equidimensional local complete intersection subscheme of a smooth projective scheme $Y$ over a field, and let $X_t$ denote the $t$-th thickening of $X$ in $Y$. Fix an ample line bundle $mathcal{O}_Y(1)$ on $Y$. We prove the follow ing asymptotic formulation of the Kodaira vanishing theorem: there exists an integer $c$, such that for all integers $t geqslant 1$, the cohomology group $H^k(X_t,mathcal{O}_{X_t}(j))$ vanishes for $k < dim X$ and $j < -ct$. Note that there are no restrictions on the characteristic of the field, or on the singular locus of $X$. We also construct examples illustrating that a linear bound is indeed the best possible, and that the constant $c$ is unbounded, even in a fixed dimension.
119 - Zijian Yao 2018
We provide a new formalism of de Rham--Witt complexes in the logarithmic setting. This construction generalizes a result of Bhatt--Lurie--Mathew, and agrees with those of Hyodo--Kato and Matsuue for log-smooth schemes of log-Cartier type. We then app ly our formalism to obtain a more direct proof of the log crystalline comparison of A_inf-cohomology in the case of semistable reduction, which is established by Cesnavicius--Koshiwara.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا