ﻻ يوجد ملخص باللغة العربية
Let $X$ be a closed equidimensional local complete intersection subscheme of a smooth projective scheme $Y$ over a field, and let $X_t$ denote the $t$-th thickening of $X$ in $Y$. Fix an ample line bundle $mathcal{O}_Y(1)$ on $Y$. We prove the following asymptotic formulation of the Kodaira vanishing theorem: there exists an integer $c$, such that for all integers $t geqslant 1$, the cohomology group $H^k(X_t,mathcal{O}_{X_t}(j))$ vanishes for $k < dim X$ and $j < -ct$. Note that there are no restrictions on the characteristic of the field, or on the singular locus of $X$. We also construct examples illustrating that a linear bound is indeed the best possible, and that the constant $c$ is unbounded, even in a fixed dimension.
For a local complete intersection subvariety $X=V({mathcal I})$ in ${mathbb P}^n$ over a field of characteristic zero, we show that, in cohomological degrees smaller than the codimension of the singular locus of $X$, the cohomology of vector bundles
Using inversion of adjunction, we deduce from Nadels theorem a vanishing property for ideals sheaves on projective varieties, a special case of which recovers a result due to Bertram--Ein--Lazarsfeld. This enables us to generalize to a large class of
We use the toric degeneration of Bott-Samelson varieties and the description of cohomolgy of line bundles on toric varieties to deduce vanishings results for the cohomology of lines bundles on Bott-Samelson varieties.
We develop a theory of ``ad hoc Chern characters for twisted matrix factorizations associated to a scheme $X$, a line bundle ${mathcal L}$, and a regular global section $W in Gamma(X, {mathcal L})$. As an application, we establish the vanishing, in
Hessenberg varieties are subvarieties of the flag variety parametrized by a linear operator $X$ and a nondecreasing function $h$. The family of Hessenberg varieties for regular $X$ is particularly important: they are used in quantum cohomology, in co