ﻻ يوجد ملخص باللغة العربية
Choosing a suitable model and determining its associated parameters from fitting to experimental data is fundamental for many problems in biomechanics. Models of shear-thinning complex fluids, dating from the work of Bird, Carreau, Cross and Yasuda, have been applied in highly-cited computational studies of heamodynamics for several decades. In this manuscript we revisit these models, first to highlight a degree of uncertainty in the naming conventions in the literature, but more importantly to address the problem of inferring model parameters by fitting rheology experiments. By refitting published data, and also by simulation, we find large, flat regions in likelihood surfaces that yield families of parameter sets which fit the data equally well. Despite having almost indistinguishable fits to experimental data these varying parameter sets can predict very different flow profiles, and as such these parameters cannot be used to draw conclusions about physical properties of the fluids, such as zero-shear viscosity or relaxation time of the fluid, or indeed flow behaviours. We verify that these features are not a consequence of the experimental data sets through simulations; by sampling points from the rheological models and adding a small amount of noise we create a synthetic data set which reveals that the problem of parameter identifiability is intrinsic to these models.
Exact solutions for laminar stratified flows of Newtonian/non-Newtonian shear-thinning fluids in horizontal and inclined channels are presented. An iterative algorithm is proposed to compute the laminar solution for the general case of a Carreau non-
Instability mechanism based on Coriolis force, on a rapidly rotating portable device handling shear thinning fluids such as blood, is of utmost importance for eventual detection of diseases by mixing with the suitable reagents. Motivated by this prop
Linear stability of horizontal and inclined stratified channel flows of Newtonian/non-Newtonian shear-thinning fluids is investigated with respect to all wavelength perturbations. The Carreau model has been chosen for the modeling of the rheology of
We analyze transient dynamics during shear start-up in viscoelastic flows between two parallel plates, with a specific focus on the signatures for the onset of transient shear banding using the Johnson-Segalman, non-stretching Rolie-Poly and Giesekus
Truncated Taylor expansions of smooth flow maps are used in Hamiltons principle to derive a multiscale Lagrangian particle representation of ideal fluid dynamics. Numerical simulations for scattering of solutions at one level of truncation are found