ﻻ يوجد ملخص باللغة العربية
We analyze transient dynamics during shear start-up in viscoelastic flows between two parallel plates, with a specific focus on the signatures for the onset of transient shear banding using the Johnson-Segalman, non-stretching Rolie-Poly and Giesekus models. We explore the dynamics of shear start-up in monotonic regions of the constitutive curves using two different methodologies: (i) the oft-used `frozen-time linear stability (eigenvalue) analysis, wherein we examine whether infinitesimal perturbations imposed on instantaneous stress components (treated as quasi steady states) exhibit exponential growth, and (ii) the more mathematically rigorous fundamental-matrix approach that characterizes the transient growth via a numerical solution of the time-dependent linearized governing equations, wherein the linearized perturbations co-evolve with the start-up shear flow. Our results reinforce the hitherto understated point that there is no universal connection between the overshoot and subsequent decay of shear stress in the base state and the unstable eigenvalues obtained from the frozen-time stability analysis. It may therefore be difficult to subsume the occurrence of transient shear banding during shear start-up within the ambit of a single model-independent criterion. Our work also suggests that the strong transients during shear start-up seen in earlier work could well be a consequence of consideration of the limit of small solvent viscosity in the absence of otherwise negligible terms such as fluid inertia.
Multiphase shear flows often show banded structures that affect the global behavior of complex fluids e.g. in microdevices. Here we investigate numerically the banding of emulsions, i.e. the formation of regions of high and low volume fraction, alter
To understand the behavior of composite fluid particles such as nucleated cells and double-emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric partic
We perform $3$D numerical simulations to investigate the sedimentation of a single sphere in the absence and presence of a simple cross shear flow in a yield stress fluid with weak inertia. In our simulations, the settling flow is considered to be th
We present a modification of a recently developed volume of fluid method for multiphase problems, so that it can be used in conjunction with a fractional step-method and fast Poisson solver, and validate it with standard benchmark problems. We then c
Motivated by problems arising in the pneumatic actuation of controllers for micro-electromechanical systems (MEMS), labs-on-a-chip or biomimetic soft robots, and the study of microrheology of both gases and soft solids, we analyze the transient fluid