ﻻ يوجد ملخص باللغة العربية
We demonstrate the robust operation of a gallium arsenide tunable-barrier single-electron pump operating with 1 part-per-million accuracy at a temperature of $1.3$~K and a pumping frequency of $500$~MHz. The accuracy of current quantisation is investigated as a function of multiple control parameters, and robust plateaus are seen as a function of three control gate voltages and RF drive power. The electron capture is found to be in the decay-cascade, rather than the thermally-broadened regime. The observation of robust plateaus at an elevated temperature which does not require expensive refrigeration is an important step towards validating tunable-barrier pumps as practical current standards.
Single electron sources have been studied as a device to establish an electric current standard for 30 years and recently as an on-demand coherent source for Fermion quantum optics. In order to construct the single electron source on a GaAs/AlGaAs tw
We review recent precision measurements on semiconductor tunable-barrier electron pumps operating in a ratchet mode. Seven studies on five different designs of pumps have reported measurements of the pump current with relative total uncertainties aro
We have realized quantized charge pumping using non-adiabatic single-electron pumps in dopant-free GaAs two-dimensional electron gases (2DEGs). The dopant-free III-V platform allows for ambipolar devices, such as p-i-n junctions, that could be combin
We investigate the behavior of the dc voltage drop in a periodically driven double barrier structure (DBS) sensed by voltages probes that are weakly coupled to the system. We find that the four terminal resistance $R_{4t}$ measured with the probes lo
Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level sp