ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy mergers up to z<2.5 I : The star formation properties of merging galaxies at separations 3-15 kpc

225   0   0.0 ( 0 )
 نشر من قبل Andrea Silva
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the influence of galaxy mergers on star formation at 0.3<z<2.5. Major mergers are selected from the CANDELS/3D-HST catalog using a peak-finding algorithm. Mergers have projected galaxy nuclei separation of their members between 3-15 kpc. We compare the star formation activity in merging and non-merging galaxies and find no significant differences. We find that only 12% of the galaxies in major mergers (in which both galaxies have log(M/Msun)>10) are star-bursting (i.e., with SFR above the main sequence of star-forming galaxies by >0.5 dex). Merging galaxies which include galaxies with lower masses show a higher fraction of star-bursting galaxies (20%). The low fraction of star-bursting merging galaxies in this sample suggests that at galaxy nuclei separations of 3-15 kpc merging galaxies are still in a early stage and are yet to reach the maximum level of star formation activity. Furthermore, the level of star formation enhancement and its duration could be arguably reduced compared to local mergers, as shown by simulations of high-z mergers, and might also depend on the physical properties (such as stellar mass and gas fraction) of the merging galaxies. Finally, we compare the specific SFR between merging galaxies. Our results suggest that, as the mass of the merging galaxies increases, the star formation activity in the less massive member in the merger suffers a more dramatic impact than its companion galaxy.



قيم البحث

اقرأ أيضاً

We present a study of the incidence of active galactic nucleus (AGN) in a sample of major merging systems at 0.3<z<2.5. Galaxies in this merger sample have projected separations between 3 to 15 kpc and are selected from the CANDELS/3D-HST catalogs us ing a peak-finding algorithm. AGNs in mergers and non-mergers are identified on the basis of their X-ray emission, optical lines, mid-infrared colors, and radio emission. Among galaxies with adequate measurements to find potential AGNs, we find a similar fraction of AGNs in mergers (16.4%) compared to the fraction found in non-merging galaxies (15.4%). In mergers, this fraction is obtained by assuming that, in unresolved observations, only one of the merging galaxies is the AGN source. The similarity between the fractions is possibly due to the higher availability of cold gas at high redshifts, where the excess of nuclear activity as a result of merging is less important than at lower redshifts. Star-forming galaxies have a higher incidence of AGNs than quiescent galaxies. In particular, starbursts in mergers are the most common sites of AGN activity since they present higher AGN fractions and black hole accretion rates. We find no clear correlation between the black hole accretion rate and the galaxy properties (i.e., star-formation rate, stellar mass) in mergers and non-mergers. However, mergers seem to have a higher correlation with star formation than non-mergers, which possibly indicates that the merging process is starting to influence the star formation and AGN activity even at this pre-coalescence stage.
We present spatially-resolved Atacama Large Millimeter/sub-millimeter Array (ALMA) 870 $mu$m dust continuum maps of six massive, compact, dusty star-forming galaxies (SFGs) at $zsim2.5$. These galaxies are selected for their small rest-frame optical sizes ($r_{rm e, F160W}sim1.6$ kpc) and high stellar-mass densities that suggest that they are direct progenitors of compact quiescent galaxies at $zsim2$. The deep observations yield high far-infrared (FIR) luminosities of L$_{rm IR}=10^{12.3-12.8}$ L$_{odot}$ and star formation rates (SFRs) of SFR$=200-700$ M$_{odot}$yr$^{-1}$, consistent with those of typical star-forming main sequence galaxies. The high-spatial resolution (FWHM$sim$0.12-0.18) ALMA and HST photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR-SFR overwhelmingly dominates the bolometric SFR up to $rsim5$ kpc, by a factor of over 100$times$ from the unobscured UV-SFR. Furthermore, the effective radius of the mean SFR profile ($r_{rm e, SFR}sim1$ kpc) is $sim$30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of $Delta t=pm100$ Myr, is a 4$times$ increase of the stellar mass density within the central 1 kpc and a 1.6$times$ decrease of the half-mass radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies.
We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. 92% have redshift determinations from the Laigle et al. (2016) catalogue. Based on t heir radio-luminosity, these objects have been divided into two populations of 644 AGN and 247 star-forming galaxies. By fixing the slope of the auto-correlation function to gamma=2, we find r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8} Mpc if we restrict our analysis to z<0.9) are respectively obtained for AGN and star-forming galaxies. These values correspond to minimum masses for dark matter haloes of M_min=10^[13.6^{+0.3}_{-0.6}] M_sun for radio-selected AGN and M_min=10^[13.1^{+0.4}_{-1.6}] M_sun for radio-emitting star-forming galaxies (M_min=10^[12.7^{+0.7}_{-2.2}] M_sun for z<0.9). Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. We obtain <M*>/M_halo<~10^{-2.7} for AGN, and <M*>/M_halo<~10^{-2.4} in the case of star-forming galaxies. Furthermore, if we restrict to z<~0.9 star-forming galaxies, we derive <M*>/M_halo<~10^{-2.1}, result which clearly indicates the cosmic process of stellar build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.
We use Horizon-AGN, a hydrodynamical cosmological simulation, to explore the role of mergers in the evolution of massive (M > 10^10 MSun) galaxies around the epoch of peak cosmic star formation (1<z<4). The fraction of massive galaxies in major merge rs (mass ratio R<4:1) is around 3%, a factor of ~2.5 lower than minor mergers (4:1<R <10:1) at these epochs, with no trend with redshift. At z~1, around a third of massive galaxies have undergone a major merger, while all such systems have undergone either a major or minor merger. While almost all major mergers at z>3 are blue (i.e. have significant associated star formation), the proportion of red mergers increases rapidly at z<2, with most merging systems at z~1.5 producing remnants that are red in rest-frame UV-optical colours. The star formation enhancement during major mergers is mild (~20-40%) which, together with the low incidence of such events, implies that this process is not a significant driver of early stellar mass growth. Mergers (R < 10:1) host around a quarter of the total star formation budget in this redshift range, with major mergers hosting around two-thirds of this contribution. Notwithstanding their central importance to the standard LCDM paradigm, mergers are minority players in driving star formation at the epochs where the bulk of todays stellar mass was formed.
109 - Lihwai Lin 2006
Using data from the DEEP2 Galaxy Redshift Survey and HST/ACS imaging in the Extended Groth Strip, we select nearly 100 interacting galaxy systems including kinematic close pairs and morphologically identified merging galaxies. Spitzer MIPS 24 micron fluxes of these systems reflect the current dusty star formation activity, and at a fixed stellar mass (M_{*}) the median infrared luminosity (L_{IR}) among merging galaxies and close pairs of blue galaxies is twice (1.9 +/- 0.4) that of control pairs drawn from isolated blue galaxies. Enhancement declines with galaxy separation, being strongest in close pairs and mergers and weaker in wide pairs compared to the control sample. At z ~ 0.9, 7.1% +/- 4.3% of massive interacting galaxies (M_{*} > 2*10^{10} M_{solar}) are found to be ULIRGs, compared to 2.6% +/- 0.7% in the control sample. The large spread of IR luminosity to stellar mass ratio among interacting galaxies suggests that this enhancement may depend on the merger stage as well as other as yet unidentified factors (e.g., galaxy structure, mass ratio, orbital characteristics, presence of AGN or bar). The contribution of interacting systems to the total IR luminosity density is moderate (<= 36 %).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا