ﻻ يوجد ملخص باللغة العربية
We use Horizon-AGN, a hydrodynamical cosmological simulation, to explore the role of mergers in the evolution of massive (M > 10^10 MSun) galaxies around the epoch of peak cosmic star formation (1<z<4). The fraction of massive galaxies in major mergers (mass ratio R<4:1) is around 3%, a factor of ~2.5 lower than minor mergers (4:1<R <10:1) at these epochs, with no trend with redshift. At z~1, around a third of massive galaxies have undergone a major merger, while all such systems have undergone either a major or minor merger. While almost all major mergers at z>3 are blue (i.e. have significant associated star formation), the proportion of red mergers increases rapidly at z<2, with most merging systems at z~1.5 producing remnants that are red in rest-frame UV-optical colours. The star formation enhancement during major mergers is mild (~20-40%) which, together with the low incidence of such events, implies that this process is not a significant driver of early stellar mass growth. Mergers (R < 10:1) host around a quarter of the total star formation budget in this redshift range, with major mergers hosting around two-thirds of this contribution. Notwithstanding their central importance to the standard LCDM paradigm, mergers are minority players in driving star formation at the epochs where the bulk of todays stellar mass was formed.
We present the star formation histories of 39 galaxies with high quality rest-frame optical spectra at 0.5<z<1.3 selected to have strong Balmer absorption lines and/or Balmer break, and compare to a sample of spectroscopically selected quiescent gala
Modern data empower observers to describe galaxies as the spatially and biographically complex objects they are. We illustrate this through case studies of four, $zsim1.3$ systems based on deep, spatially resolved, 17-band + G102 + G141 Hubble Space
We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts ($z<0.3$). We combine this sample with new estimates of the major-merger pair fraction for
We investigate the burstiness of star formation histories (SFHs) of galaxies at $0.4<z<1$ by using the ratio of star formation rates (SFRs) measured from H$beta$ and FUV (1500 AA) (H$beta$--to--FUV ratio). Our sample contains 164 galaxies down to ste
Understanding the variability of galaxy star formation histories (SFHs) across a range of timescales provides insight into the underlying physical processes that regulate star formation within galaxies. We compile the SFHs of galaxies at $z=0$ from a