ﻻ يوجد ملخص باللغة العربية
We investigate the properties of the interstellar medium, star formation, and the current-day stellar population in the strongly-lensed star-forming galaxy H-ATLAS J091043.1-000321 (SDP.11), at z = 1.7830, using new Herschel and ALMA observations of far-infrared fine-structure lines of carbon, oxygen and nitrogen. We report detections of the [O III] 52 um, [N III] 57 um, and [O I] 63 um lines from Herschel/PACS, and present high-resolution imaging of the [C II] 158 um line, and underlying continuum, using ALMA. We resolve the [C II] line emission into two spatially-offset Einstein rings, tracing the red- and blue-velocity components of the line, in the ALMA/Band-9 observations at 0.2 resolution. The values seen in the [C II]/FIR ratio map, as low as ~ 0.02% at the peak of the dust continuum, are similar to those of local ULIRGs, suggesting an intense starburst in this source. This is consistent with the high intrinsic FIR luminosity (~ 3 x 10^12 Lo), ~ 16 Myr gas depletion timescale, and < 8 Myr timescale since the last starburst episode, estimated from the hardness of the UV radiation field. By applying gravitational lensing models to the visibilities in the uv-plane, we find that the lensing magnification factor varies by a factor of two across SDP.11, affecting the observed line profiles. After correcting for the effects of differential lensing, a symmetric line profile is recovered, suggesting that the starburst present here may not be the result of a major merger, as is the case for local ULIRGs, but instead could be powered by star-formation activity spread across a 3-5 kpc rotating disk.
We study the propagation of star formation based on the investigation of the separation of young star clusters from HII regions nearest to them. The relation between the separation and U-B colour index (or age) of a star cluster was found. The averag
Methods: We observed the high-mass hot core region G351.77-0.54 with ALMA and more than 16km baselines. Results: At a spatial resolution of 18/40au (depending on the distance), we identify twelve sub-structures within the inner few thousand au of t
We present high-resolution observations of the 880 $mu$m (rest-frame FIR) continuum emission in the z$=$4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation in this unlense
We study the spatially resolved physical properties of the Cosmic Snake arc in MACS J1206.2-0847 and the arc in Abell 0521 (A521). These are two strongly lensed galaxies at redshifts $z=1.036$ and $z=1.044$. We used observations of the Hubble Space T
Constraining the sub-galactic matter-power spectrum on 1-10 kpc scales would make it possible to distinguish between the concordance $Lambda$CDM model and various alternative dark-matter models due to the significantly different levels of predicted m