ترغب بنشر مسار تعليمي؟ اضغط هنا

High-mass star formation at sub-50AU scales

81   0   0.0 ( 0 )
 نشر من قبل Henrik Beuther
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Methods: We observed the high-mass hot core region G351.77-0.54 with ALMA and more than 16km baselines. Results: At a spatial resolution of 18/40au (depending on the distance), we identify twelve sub-structures within the inner few thousand au of the region. The brightness temperatures are high, reaching values greater 1000K, signposting high optical depth toward the peak positions. Core separations vary between sub-100au to several 100 and 1000au. The core separations and approximate masses are largely consistent with thermal Jeans fragmentation of a dense gas core. Due to the high continuum optical depth, most spectral lines are seen in absorption. However, a few exceptional emission lines are found that most likely stem from transitions with excitation conditions above1000K. Toward the main continuum source, these emission lines exhibit a velocity gradient across scales of 100-200au aligned with the molecular outflow and perpendicular to the previously inferred disk orientation. While we cannot exclude that these observational features stem from an inner hot accretion disk, the alignment with the outflow rather suggests that it stems from the inner jet and outflow region. The highest-velocity features are found toward the peak position, and no Hubble-like velocity structure can be identified. Therefore, these data are consistent with steady-state turbulent entrainment of the hot molecular gas via Kelvin-Helmholtz instabilities at the interface between the jet and the outflow. Conclusions: Resolving this high-mass star-forming region at sub-50au scales indicates that the hierarchical fragmentation process in the framework of thermal Jeans fragmentation can continue down to the smallest accessible spatial scales. Velocity gradients on these small scales have to be treated cautiously and do not necessarily stem from disks, but may be better explained with outflow emission.

قيم البحث

اقرأ أيضاً

83 - Jonathan C. Tan 2015
I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostella r Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.
We study the propagation of star formation based on the investigation of the separation of young star clusters from HII regions nearest to them. The relation between the separation and U-B colour index (or age) of a star cluster was found. The averag e age of star clusters increases with the separation as the 1.0-1.2 power in the separation range from 40 to 200 pc and as the 0.4-0.9 power in the range of 100-500 pc in the galaxies with symmetric morphology. The galaxies with distorted asymmetric disc structure show more complex and steeper (power >1.2 at separations from 40 to 500 pc) dependence between the age and the separation. Our results confirm the findings of previous studies on the dominant role of turbulence in propagation of the star formation process on spatial scales up to 500 pc and on time scales up to 300 Myr. On a smaller scale (=<100 pc), other physical processes, such as stellar winds and supernova explosions, play an important role along with turbulence. On the scale of stellar associations (100-200 pc and smaller), the velocity of star formation propagation is almost constant and it has a typical value of a few km/s.
96 - S. Bihr , H. Beuther , H. Linz 2015
We want to understand the kinematic and thermal properties of young massive gas clumps prior to and at the earliest evolutionary stages of high-mass star formation. Do we find signatures of gravitational collapse? Do we find temperature gradients in the vicinity or absence of infrared emission sources? Do we find coherent velocity structures toward the center of the dense and cold gas clumps? To determine kinematics and gas temperatures, we used ammonia, because it is known to be a good tracer and thermometer of dense gas. We observed the NH$_3$(1,1) and (2,2) lines within seven very young high-mass star-forming regions with the VLA and the Effelsberg 100m telescope. This allows us to study velocity structures, linewidths, and gas temperatures at high spatial resolution of 3-5$$, corresponding to $sim$0.05 pc. We find on average cold gas clumps with temperatures in the range between 10 K and 30 K. The observations do not reveal a clear correlation between infrared emission peaks and ammonia temperature peaks. We report an upper limit for the linewidth of $sim$1.3 km s$^{-1}$, at the spectral resolution limit of our VLA observation. This indicates a relatively low level of turbulence on the scale of the observations. Velocity gradients are present in almost all regions with typical velocity differences of 1 to 2 km s$^{-1}$ and gradients of 5 to 10 km s$^{-1}$ pc$^{-1}$. These velocity gradients are smooth in most cases, but there is one exceptional source (ISOSS23053), for which we find several velocity components with a steep velocity gradient toward the clump centers that is larger than 30 km s$^{-1}$ pc$^{-1}$. This steep velocity gradient is consistent with recent models of cloud collapse. Furthermore, we report a spatial correlation of ammonia and cold dust, but we also find decreasing ammonia emission close to infrared emission sources.
A full understanding of high-mass star formation requires the study of one of the most elusive components of the energy balance in the interstellar medium: magnetic fields. We report ALMA 1.2 mm, high-resolution (700 au) dust polarization and molecul ar line observations of the rotating hot molecular core embedded in the high-mass star-forming region IRAS 18089-1732. The dust continuum emission and magnetic field morphology present spiral-like features resembling a whirlpool. The velocity field traced by the H13CO+ (J=3-2) transition line reveals a complex structure with spiral filaments that are likely infalling and rotating, dragging the field with them. We have modeled the magnetic field and find that the best model corresponds to a weakly magnetized core with a mass-to-magnetic-flux ratio (lambda) of 8.38. The modeled magnetic field is dominated by a poloidal component, but with an important contribution from the toroidal component that has a magnitude of 30% of the poloidal component. Using the Davis-Chandrasekhar-Fermi method, we estimate a magnetic field strength of 3.5 mG. At the spatial scales accessible to ALMA, an analysis of the energy balance of the system indicates that gravity overwhelms turbulence, rotation, and the magnetic field. We show that high-mass star formation can occur in weakly magnetized environments, with gravity taking the dominant role.
Star formation is a multi-scale, multi-physics problem ranging from the size scale of molecular clouds ($sim$10s pc) down to the size scales of dense prestellar cores ($sim$0.1 pc) that are the birth sites of stars. Several physical processes like tu rbulence, magnetic fields and stellar feedback, such as radiation pressure and outflows, are more or less important for different stellar masses and size scales. During the last decade a variety of technological and computing advances have transformed our understanding of star formation through the use of multi-wavelength observations, large scale observational surveys, and multi-physics multi-dimensional numerical simulations. Additionally, the use of synthetic observations of simulations have provided a useful tool to interpret observational data and evaluate the importance of various physical processes on different scales in star formation. Here, we review these recent advancements in both high- ($M gtrsim 8 , M_{rm odot}$) and low-mass star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا