ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of metallicity on the near-surface effect on oscillation frequencies

418   0   0.0 ( 0 )
 نشر من قبل Louis Manchon
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CoRoT and Kepler missions have provided high-quality measurements of the frequency spectra of solar-like pulsators, enabling us to probe stellar interiors with a very high degree of accuracy by comparing the observed and modeled frequencies. However, the frequencies computed with 1D models suffer from systematic errors related to the poor modeling of the uppermost layers of stars. These biases are what is commonly named the near surface effect. The dominant effect is related to the turbulent pressure that modifies the hydrostatic equilibrium and thus the frequencies. This has already been investigated using grids of 3D RMHD simulations, which also were used to constrain the parameters of the empirical correction models. However, the effect of metallicity has not been considered so far. We study the impact of metallicity on the surface effect across the HR diagram, and provide a method for accounting for it when using the empirical correction models. We computed a grid of patched 1D stellar models with the stellar evolution code CESTAM in which poorly modeled surface layers have been replaced by averaged stratification computed with the 3D RMHD code CO5BOLD. We found that metallicity has a strong impact on the surface effect: keeping T_eff and log g constant, the frequency residuals can vary by up to a factor two. Therefore, the influence of metallicity cannot be neglected. We found that a correct way of accounting for it is to consider the surface Rosseland mean opacity. It allowed us to give a physically-grounded justification as well as a scaling relation for the frequency differences at nu_max as a function of T_eff, log g and kappa. Finally, we provide prescriptions for the fitting parameters of the correction functions. We show that the impact of metallicity through the Rosseland mean opacity must be taken into account when studying and correcting the surface effect.



قيم البحث

اقرأ أيضاً

Adiabatic oscillation frequencies of stellar models, computed with the standard mixing-length formulation for convection, increasingly deviate with radial order from observations in solar-like stars. Standard solar models overestimate adiabatic frequ encies by as much as ~ 20 {mu}Hz. In this letter, we address the physical processes of turbulent convection that are predominantly responsible for the frequency differences between standard models and observations, also called `surface effects. We compare measured solar frequencies from the MDI instrument on the SOHO spacecraft with frequency calculations that include three-dimensional (3D) hydrodynamical simulation results in the equilibrium model, nonadiabatic effects, and a consistent treatment of the turbulent pressure in both the equilibrium and stability computations. With the consistent inclusion of the above physics in our model computation we are able to reproduce the observed solar frequencies to < 3 {mu}Hz without the need of any additional ad-hoc functional corrections.
114 - W. H. Ball , L. Gizon 2017
Accurate modelling of solar-like oscillators requires that modelled mode frequencies are corrected for the systematic shift caused by improper modelling of the near-surface layers, known as the surface effect. ... We investigate how much additional u ncertainty is introduced to stellar model parameters by our uncertainty about the functional form of the surface effect. At the same time, we test whether any of the parametrizations is significantly better or worse at modelling observed subgiants and low-luminosity red giants. We model six stars observed by Kepler that show clear mixed modes. We fix the input physics of the stellar models and vary the choice of surface correction ... Models using a solar-calibrated power law correction consistently fit the observations more poorly than the other four corrections. Models with the remaining four corrections generally fit ... about equally well, with the combined surface correction by Ball & Gizon perhaps being marginally superior. The fits broadly agree on the model parameters within about the $2sigma$ uncertainties, with discrepancies between the modified Lorentzian and free power law corrections occasionally exceeding the $3sigma$ level. Relative to the best-fitting values, the total uncertainties on the masses, radii and ages of the stars are all less than 2, 1 and 6 per cent, respectively. A solar-calibrated power law ... appears unsuitable for use with more evolved solar-like oscillators. Among the remaining surface corrections, the uncertainty in the model parameters introduced by the surface effects is about twice as large as the uncertainty in the individual fits for these six stars. Though the fits are thus somewhat less certain because of our uncertainty of how to manage the surface effect, these results also demonstrate that it is feasible to model the individual mode frequencies of subgiants and low-luminosity red giants. ...
Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity can affect a stellar dynamo. Using the most complete set of observations of a stellar cycle ever obtained for a Sun-like star, we show how the solar analog HD 173701 exhibits solar-like differential rotation and a 7.4-year activity cycle. While the duration of the cycle is comparable to that generated by the solar dynamo, the amplitude of the brightness variability is substantially stronger. The only significant difference between HD 173701 and the Sun is its metallicity, which is twice the solar value. Therefore, this provides a unique opportunity to study the effect of the higher metallicity on the dynamo acting in this star and to obtain a comprehensive understanding of the physical mechanisms responsible for the observed photometric variability. The observations can be explained by the higher metallicity of the star, which is predicted to foster a deeper outer convection zone and a higher facular contrast, resulting in stronger variability.
Small-scale magnetic fields are not only the fundamental element of the solar magnetism, but also closely related to the structure of the solar atmosphere. The observations have shown that there is a ubiquitous tangled small-scale magnetic field with a strength of 60 $sim$ 130,G in the canopy forming layer of the quiet solar photosphere. On the other hand, the multi-dimensional MHD simulations show that the convective overshooting expels the magnetic field to form the magnetic canopies at a height of about 500,km in the upper photosphere. However, the distribution of such small-scale ``canopies in the solar photosphere cannot be rigorously constrained by either observations and numerical simulations. Based on stellar standard models, we identify that these magnetic canopies can act as a global magnetic-arch splicing layer, and find that the reflections of the solar p-mode oscillations at this magnetic-arch splicing layer results in significant improvement on the discrepancy between the observed and calculated p-mode frequencies. The location of the magnetic-arch splicing layer is determined at a height of about 630,km, and the inferred strength of the magnetic field is about 90,G. These features of the magnetic-arch splicing layer derived independently in the present study are quantitatively in agreement with the presence of small-scale magnetic canopies as those obtained by the observations and 3-D MHD simulations.
Accurate determination of stellar rotation periods is important for estimating stellar ages as well as for understanding stellar activity and evolution. While for about thirty thousand stars in the Kepler field rotation periods can be determined, the re are over hundred thousand stars, especially with low photometric variability and irregular pattern of variations, for which rotational periods are unknown. Here, we investigate the effect of metallicity on the detectability of rotation periods. This is done by synthesising light curves of hypothetical stars, which are identical to our Sun, with the exception of the metallicity. These light curves are then used as an input to the period determination algorithms. We find that the success rate for recovering the rotation signal has a minimum close to the solar metallicity value. This can be explained by the compensation effect of facular and spot contributions. In addition, selecting solar-like stars with near-solar effective temperature, near solar photometric variability, and with metallicity between M/H = -0.35 and M/H = 0.35 from the Kepler sample, we analyse the fraction of stars for which rotational periods have been detected as a function of metallicity. In agreement with our theoretical estimate we found a local minimum for the detection fraction close to the solar metallicity. We further report rotation periods of 87~solar-like Kepler stars for the first time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا