ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Memory from Local Hysteresis in an Amorphous Solid

70   0   0.0 ( 0 )
 نشر من قبل Nathan Keim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A disordered material that cannot relax to equilibrium, such as an amorphous or glassy solid, responds to deformation in a way that depends on its past. In experiments we train a 2D athermal amorphous solid with oscillatory shear, and show that a suitable readout protocol reveals the shearing amplitude. When shearing alternates between two amplitudes, signatures of both values are retained only if the smaller one is applied last. We show that these behaviors arise because individual clusters of rearrangements are hysteretic and dissipative, and because different clusters respond differently to shear. These roles for hysteresis and disorder are reminiscent of the return-point memory seen in ferromagnets and many other systems. Accordingly, we show how a simple model of a ferromagnet can reproduce key results of our experiments and of previous simulations. Unlike ferromagnets, amorphous solids disorder is unquenched; they require training to develop this behavior.

قيم البحث

اقرأ أيضاً

We demonstrate that irreversible structural reorganization is not necessary for the observation of yield behaviour in an amorphous solid. While the majority of solids strained to their yield point do indeed undergo an irreversible reorganization, we find a significant fraction of solids exhibit yield via a reversible strain. We also demonstrate that large instantaneous strains in excess of the yield stress can result in complete stress relaxation, a result of the large non-affine motions driven by the applied strain. The empirical similarity of the dependence of the ratio of stress over strain on the non-affine mean squared displacement with that for the shear modulus obtained from quiescent liquid at non-zero temperature supports the proposition that rigidity depends on the size of the sampled configurational space only, and is insensitive as to how this space is sampled.
Athermal systems across a large range of length scales, ranging from foams and granular bead packings to crumpled metallic sheets, exhibit slow stress relaxation when compressed. Experimentally they show a non-monotonic stress response when decompres sed somewhat after an initial compression, i.e. under a two-step, Kovacs-like protocol. It turns out that from this response one can tell the age of the system, suggesting an interpretation as a memory effect. In this work we use a model of an athermal jammed solid, specifically a binary mixture of soft harmonic spheres, to explore this phenomenon through in-silico experiments. Using extensive simulations under conditions analogous to those in experiment, we observe identical phenomenology in the stress response under a two--step protocol. Our model system also recovers the behaviour under a more recently studied three-step protocol, which consists of a compression followed by a decompression and then a final compression. We show that the observed response in both two-step and three-step protocols can be understood using Linear Response Theory. In particular, a linear scaling with age for the two-step protocol arises generically for slow linear responses with power law or logarithmic decay and does not in itself point to any underlying aging dynamics.
We present the results of simulation studies of a model binary metal-metalloid alloy in which we characterize and explain the local coordination structure, the intermediate structure associated with the packing of these coordination polyhedra and the thermal stability of the various structural elements of this model amorphous solid.
First systematic spin probe ESR study of water freezing has been conducted using TEMPOL and TEMPO as the probes. The spin probe signature of the water freezing has been described in terms of the collapse of narrow triplet spectrum into a single broad line. This spin probe signature of freezing has been observed at an anomalously low temperature when a milimoler solution of TEMPOL is slowly cooled from room temperature. A systematic observation has revealed a spin probe concentration dependence of these freezing and respective melting points. These results can be explained in terms of localization of spin probe and liquid water, most probably in the interstices of ice grains, in an ice matrix. The lowering of spin probe freezing point, along with the secondary evidences, like spin probe concentration dependence of peak-to-peak width in frozen limit signal, indicates a possible size dependence of these localizations/entrapments with spin probe concentration. A weak concentration dependence of spin probe assisted freezing and melting points, which has been observed for TEMPO in comparison to TEMPOL, indicates different natures of interactions with water of these two probes. This view is also supported by the relaxation behavior of the two probes.
257 - Alba Sicher 2021
Structural colors are produced by wavelength-dependent scattering of light from nanostructures. While living organisms often exploit phase separation to directly assemble structurally colored materials from macromolecules, synthetic structural colors are typically produced in a two-step process involving the sequential synthesis and assembly of building blocks. Phase separation is attractive for its simplicity, but applications are limited due to a lack of robust methods for its control. A central challenge is to arrest phase separation at the desired length scale. Here, we show that solid-state polymerization-induced phase separation can produce stable structures at optical length scales. In this process, a polymeric solid is swollen and softened with a second monomer. During its polymerization, the two polymers become immiscible and phase separate. As free monomer is depleted, the host matrix resolidifies and arrests coarsening. The resulting PS-PMMA composites have a blue or white appearance. We compare these biomimetic nanostructures to those in structurally-colored feather barbs, and demonstrate the flexibility of this approach by producing structural color in filaments and large sheets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا