ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of hidden ground-state order in NdNiO$_3$ superlattices

426   0   0.0 ( 0 )
 نشر من قبل Ankit Disa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The combination of charge and spin degrees of freedom with electronic correlations in condensed matter systems leads to a rich array of phenomena, such as magnetism, superconductivity, and novel conduction mechanisms. While such phenomena are observed in bulk materials, a richer array of behaviors becomes possible when these degrees of freedom are controlled in atomically layered heterostructures, where one can constrain dimensionality and impose interfacial boundary conditions. Here, we unlock a host of unique, hidden electronic and magnetic phase transitions in NdNiO$_3$ while approaching the two-dimensional (2D) limit, resulting from the differing influences of dimensional confinement and interfacial coupling. Most notably, we discover a new phase in fully 2D, single layer NdNiO$_3$, in which all signatures of the bulk magnetic and charge ordering are found to vanish. In addition, for quasi two-dimensional layers down to a thickness of two unit cells, bulk-type ordering persists but separates from the onset of insulating behavior in a manner distinct from that found in the bulk or thin film nickelates. Using resonant x-ray spectroscopies, first-principles theory, and model calculations, we propose that the single layer phase suppression results from a new mechanism of interfacial electronic reconstruction based on ionicity differences across the interface, while the phase separation in multi-layer NdNiO$_3$ emerges due to enhanced 2D fluctuations. These findings provide insights into the intertwined mechanisms of charge and spin ordering in strongly correlated systems in reduced dimensions and illustrate the ability to use atomic layering to access hidden phases.

قيم البحث

اقرأ أيضاً

In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO$_3$ have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental under standing of the electronic and orbital states emerging after interfacial charge-transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of correlated metal LaNiO$_3$ and doped Mott insulator LaTiO$_{3+delta}$, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge-transfer from Ti to Ni sites giving rise to an insulating ground state with orbital polarization and $e_textrm{g}$ orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.
We have performed ab initio calculations within the LDA+U method in the multilayered system (LaMnO$_3$)$_{2n}$ / (SrMnO$_3$)$_n$. Our results suggest a charge-ordered state that alternates Mn$^{3+}$ and Mn$^{4+}$ cations in a checkerboard in-plane pa ttern is developed at the interfacial layer, leading to a gap opening. Such an interfacial charge-ordered situation would be the energetically favored reconstruction between LaMnO$_3$ and SrMnO$_3$. This helps understanding the insulating behavior observed experimentally in these multilayers at intermediate values of $n$, whose origin is known to be due to some interfacial mechanism.
X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3,1/3,3/2). The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe/O double-layers with antiferroelectric stacking. Diffuse scattering at 360 K, with (1/3,1/3,0) propagation, indicates ferroelectric short-range correlations between neighboring double-layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled.
The influence of spin-orbit coupling (SOC) on the physical properties of the 5d2 system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calcula tions. Although a significant degree of frustration is expected, we find that Sr2MgOsO6 orders in a type I antiferromagnetic structure at the remarkably high temperature of 108 K. The measurements presented allow for the first accurate quantification of the size of the magnetic moment in a 5d2 system of 0.60(2) muB - a significantly reduced moment from the expected value for such a system. Furthermore, significant anisotropy is identified via a spin excitation gap, and we confirm by first principles calculations that SOC not only provides the magnetocrystalline anisotropy, but also plays a crucial role in determining both the ground state magnetic order and the size of the local moment in this compound. Through comparison to Sr2ScOsO6, it is demonstrated that SOC-induced anisotropy has the ability to relieve frustration in 5d2 systems relative to their 5d3 counterparts, providing an explanation of the high TN found in Sr2MgOsO6.
Artificially fabricated 3$d$/5$d$ superlattices (SLs) involve both strong electron correlation and spin-orbit coupling in one material by means of interfacial 3$d$-5$d$ coupling, whose mechanism remains mostly unexplored. In this work we investigated the mechanism of interfacial coupling in LaMnO$_3$/SrIrO$_3$ SLs by several spectroscopic approaches. Hard x-ray absorption, magnetic circular dichroism and photoemission spectra evidence the systematic change of the Ir ferromagnetism and the electronic structure with the change of the SL repetition period. First-principles calculations further reveal the mechanism of the SL-period dependence of the interfacial electronic structure and the local properties of the Ir moments, confirming that the formation of Ir-Mn molecular orbital is responsible for the interfacial coupling effects. The SL-period dependence of the ratio between spin and orbital components of the Ir magnetic moments can be attributed to the realignment of electron spin during the formation of the interfacial molecular orbital. Our results clarify the nature of interfacial coupling in this prototypical 3$d$/5$d$ SL system and the conclusion will shed light on the study of other strongly correlated and spin-orbit coupled oxide hetero-interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا