ﻻ يوجد ملخص باللغة العربية
Autonomous robotic grasping plays an important role in intelligent robotics. However, how to help the robot grasp specific objects in object stacking scenes is still an open problem, because there are two main challenges for autonomous robots: (1)it is a comprehensive task to know what and how to grasp; (2)it is hard to deal with the situations in which the target is hidden or covered by other objects. In this paper, we propose a multi-task convolutional neural network for autonomous robotic grasping, which can help the robot find the target, make the plan for grasping and finally grasp the target step by step in object stacking scenes. We integrate vision-based robotic grasping detection and visual manipulation relationship reasoning in one single deep network and build the autonomous robotic grasping system. Experimental results demonstrate that with our model, Baxter robot can autonomously grasp the target with a success rate of 90.6%, 71.9% and 59.4% in object cluttered scenes, familiar stacking scenes and complex stacking scenes respectively.
The method of deep learning has achieved excellent results in improving the performance of robotic grasping detection. However, the deep learning methods used in general object detection are not suitable for robotic grasping detection. Current modern
Robots can effectively grasp and manipulate objects using their 3D models. In this paper, we propose a simple shape representation and a reconstruction method that outperforms state-of-the-art methods in terms of geometric metrics and enables grasp g
Grasp detection with consideration of the affiliations between grasps and their owner in object overlapping scenes is a necessary and challenging task for the practical use of the robotic grasping approach. In this paper, a robotic grasp detection al
Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms
Despite the impressive progress achieved in robust grasp detection, robots are not skilled in sophisticated grasping tasks (e.g. search and grasp a specific object in clutter). Such tasks involve not only grasping, but comprehensive perception of the