ترغب بنشر مسار تعليمي؟ اضغط هنا

REGRAD: A Large-Scale Relational Grasp Dataset for Safe and Object-Specific Robotic Grasping in Clutter

84   0   0.0 ( 0 )
 نشر من قبل Hanbo Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the impressive progress achieved in robust grasp detection, robots are not skilled in sophisticated grasping tasks (e.g. search and grasp a specific object in clutter). Such tasks involve not only grasping, but comprehensive perception of the visual world (e.g. the relationship between objects). Recently, the advanced deep learning techniques provide a promising way for understanding the high-level visual concepts. It encourages robotic researchers to explore solutions for such hard and complicated fields. However, deep learning usually means data-hungry. The lack of data severely limits the performance of deep-learning-based algorithms. In this paper, we present a new dataset named regrad to sustain the modeling of relationships among objects and grasps. We collect the annotations of object poses, segmentations, grasps, and relationships in each image for comprehensive perception of grasping. Our dataset is collected in both forms of 2D images and 3D point clouds. Moreover, since all the data are generated automatically, users are free to import their own object models for the generation of as many data as they want. We have released our dataset and codes. A video that demonstrates the process of data generation is also available.

قيم البحث

اقرأ أيضاً

Object grasping is critical for many applications, which is also a challenging computer vision problem. However, for the clustered scene, current researches suffer from the problems of insufficient training data and the lacking of evaluation benchmar ks. In this work, we contribute a large-scale grasp pose detection dataset with a unified evaluation system. Our dataset contains 87,040 RGBD images with over 370 million grasp poses. Meanwhile, our evaluation system directly reports whether a grasping is successful or not by analytic computation, which is able to evaluate any kind of grasp poses without exhausted labeling pose ground-truth. We conduct extensive experiments to show that our dataset and evaluation system can align well with real-world experiments. Our dataset, source code and models will be made publicly available.
We present a novel approach to robotic grasp planning using both a learned grasp proposal network and a learned 3D shape reconstruction network. Our system generates 6-DOF grasps from a single RGB-D image of the target object, which is provided as in put to both networks. By using the geometric reconstruction to refine the the candidate grasp produced by the grasp proposal network, our system is able to accurately grasp both known and unknown objects, even when the grasp location on the object is not visible in the input image. This paper presents the network architectures, training procedures, and grasp refinement method that comprise our system. Experiments demonstrate the efficacy of our system at grasping both known and unknown objects (91% success rate in a physical robot environment, 84% success rate in a simulated environment). We additionally perform ablation studies that show the benefits of combining a learned grasp proposal with geometric reconstruction for grasping, and also show that our system outperforms several baselines in a grasping task.
103 - Ali Ayub , Alan R. Wagner 2021
Deep learning has achieved remarkable success in object recognition tasks through the availability of large scale datasets like ImageNet. However, deep learning systems suffer from catastrophic forgetting when learning incrementally without replaying old data. For real-world applications, robots also need to incrementally learn new objects. Further, since robots have limited human assistance available, they must learn from only a few examples. However, very few object recognition datasets and benchmarks exist to test incremental learning capability for robotic vision. Further, there is no dataset or benchmark specifically designed for incremental object learning from a few examples. To fill this gap, we present a new dataset termed F-SIOL-310 (Few-Shot Incremental Object Learning) which is specifically captured for testing few-shot incremental object learning capability for robotic vision. We also provide benchmarks and evaluations of 8 incremental learning algorithms on F-SIOL-310 for future comparisons. Our results demonstrate that the few-shot incremental object learning problem for robotic vision is far from being solved.
Robots can effectively grasp and manipulate objects using their 3D models. In this paper, we propose a simple shape representation and a reconstruction method that outperforms state-of-the-art methods in terms of geometric metrics and enables grasp g eneration with high precision and success. Our reconstruction method models the object geometry as a pair of depth images, composing the shell of the object. This representation allows using image-to-image residual ConvNet architectures for 3D reconstruction, generates object reconstruction directly in the camera frame, and generalizes well to novel object types. Moreover, an object shell can be converted into an object mesh in a fraction of a second, providing time and memory efficient alternative to voxel or implicit representations. We explore the application of shell representation for grasp planning. With rigorous experimental validation, both in simulation and on a real setup, we show that shell reconstruction encapsulates sufficient geometric information to generate precise grasps and the associated grasp quality with over 90% accuracy. Diverse grasps computed on shell reconstructions allow the robot to select and execute grasps in cluttered scenes with more than 93% success rate.
Grasp detection with consideration of the affiliations between grasps and their owner in object overlapping scenes is a necessary and challenging task for the practical use of the robotic grasping approach. In this paper, a robotic grasp detection al gorithm named ROI-GD is proposed to provide a feasible solution to this problem based on Region of Interest (ROI), which is the region proposal for objects. ROI-GD uses features from ROIs to detect grasps instead of the whole scene. It has two stages: the first stage is to provide ROIs in the input image and the second-stage is the grasp detector based on ROI features. We also contribute a multi-object grasp dataset, which is much larger than Cornell Grasp Dataset, by labeling Visual Manipulation Relationship Dataset. Experimental results demonstrate that ROI-GD performs much better in object overlapping scenes and at the meantime, remains comparable with state-of-the-art grasp detection algorithms on Cornell Grasp Dataset and Jacquard Dataset. Robotic experiments demonstrate that ROI-GD can help robots grasp the target in single-object and multi-object scenes with the overall success rates of 92.5% and 83.8% respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا