ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing magneto-elastic phenomena through an effective spin-bath coupling model

110   0   0.0 ( 0 )
 نشر من قبل Stam Nicolis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A phenomenological model is constructed, that captures the effects of coupling magnetic and elastic degrees of freedom, in the presence of external, stochastic perturbations, in terms of the interaction of magnetic moments with a bath, whose individual degrees of freedom cannot be resolved and only their mesoscopic properties are relevant. In the present work, the consequences of identifying the effects of dissipation as resulting from interactions with a bath of spins are explored, in addition to elastic, degrees of freedom. The corresponding stochastic differential equations are solved numerically and the moments of the magnetization are computed. The stochastic equations implicitly define a measure on the space of spin configurations, whose moments at equal times satisfy a hierarchy of deterministic, ordinary differential equations. Closure assumptions are used to truncate the hierarchy and the same moments are computed. We focus on the advantages and problems that each approach presents, for the approach to equilibrium and, in particular, the emergence of longitudinal damping.



قيم البحث

اقرأ أيضاً

The consequences of coupling magnetic and elastic degrees of freedom, where spins and deformations are carried by point-like objects subject to local interactions, are studied, theoretically and by detailed numerical simulations. From the constrained Lagrangians we derive consistent equations of motion for the coupled dynamical variables. In order to probe the dynamics of such a system, we consider external perturbations, such as spin transfer torques for the magnetic part, and homogeneous stresses for the elastic part, associated to their corresponding damping. This approach is applied to the study of ultrafast switching processes in anti-ferromagnetic systems, which have recently attracted attention as candidates for anti-ferromagnetic spintronic devices. Our strategy is then checked in simple, but instructive, situations. We carried out numerical experiments to study, in particular, how the magnetostrictive coupling and external stresses affect the nature of the switching processes in a prototype anti-ferromagnetic material.
Using fast electron spin resonance spectroscopy of a single nitrogen-vacancy defect in diamond, we demonstrate real-time readout of the Overhauser field produced by its nuclear spin environment under ambient conditions. These measurements enable narr owing the Overhauser field distribution by post-selection, corresponding to a conditional preparation of the nuclear spin bath. Correlations of the Overhauser field fluctuations are quantitatively inferred by analysing the Allan deviation over consecutive measurements. This method allows to extract the dynamics of weakly coupled nuclear spins of the reservoir.
We report an ultrasonic investigation of the elastic moduli on a single crystal of hexagonal YMnO_3 as a function of temperature. Stiffening anomalies in the antiferromagnetic Neel state below T_N = 72.4 K are observed on all the four elastic moduli C_{ii}. The anomalies are the most important on C_{11} and C_{66} for in-plane elastic deformations; this is consistent with a strong coupling of the lattice with the in-plane exchange interactions. We use a Landau free energy model to account for these elastic anomalies. We derive an expression which relates the temperature profile of the anomaly to the order parameter; the critical exponent associated to this parameter $beta$ = 0.42 is not consistent with a chiral XY or 3D Heisenberg universality class, but more in agreement with a conventional antiferromagnetic long range order. A tiny softening anomaly on C_{11} for which hysteresis effects are observed could be indicative of an interaction between ferroelectric and magnetic domains at T_N. Moreover, magnetic fluctuations effects both above and below T_N are identified through abnormal temperature and magnetic field effects.
Spin-orbit coupling (SOC) describes the relativistic interaction between the spin and momentum degrees of freedom of electrons, and is central to the rich phenomena observed in condensed matter systems. In recent years, new phases of matter have emer ged from the interplay between SOC and low dimensionality, such as chiral spin textures and spin-polarized surface and interface states. These low-dimensional SOC-based realizations are typically robust and can be exploited at room temperature. Here we discuss SOC as a means of producing such fundamentally new physical phenomena in thin films and heterostructures. We put into context the technological promise of these material classes for developing spin-based device applications at room temperature.
The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin Hamiltonian in the high magnetic B-field limit. Then we project the eigenstates onto an unpolarized state of the nuclear bath and find that the resulting density of states has Gaussian tails. The level spacing of the nuclear sublevels is exponentially small in the middle of each of the two electron Zeeman levels but increases super-exponentially away from the center. This suggests to select states from the wings of the distribution when the system is projected on a single eigenstate by a measurement to reduce the noise of the nuclear spin bath. This theory is valid when the external magnetic field is larger than a typical Overhauser field at high nuclear spin temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا