ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling magneto-elastic Lagrangians to spin transfer torque sources

82   0   0.0 ( 0 )
 نشر من قبل Stam Nicolis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The consequences of coupling magnetic and elastic degrees of freedom, where spins and deformations are carried by point-like objects subject to local interactions, are studied, theoretically and by detailed numerical simulations. From the constrained Lagrangians we derive consistent equations of motion for the coupled dynamical variables. In order to probe the dynamics of such a system, we consider external perturbations, such as spin transfer torques for the magnetic part, and homogeneous stresses for the elastic part, associated to their corresponding damping. This approach is applied to the study of ultrafast switching processes in anti-ferromagnetic systems, which have recently attracted attention as candidates for anti-ferromagnetic spintronic devices. Our strategy is then checked in simple, but instructive, situations. We carried out numerical experiments to study, in particular, how the magnetostrictive coupling and external stresses affect the nature of the switching processes in a prototype anti-ferromagnetic material.



قيم البحث

اقرأ أيضاً

We investigate an interfacial spin-transfer torque and $beta$-term torque with alternating current (AC) parallel to a magnetic interface. We find that both torques are resonantly enhanced as the AC frequency approaches to the exchange splitting energ y. We show that this resonance allows us to estimate directly the interfacial exchange interaction strength from the domain wall motion. We also find that the $beta$-term includes an unconventional contribution which is proportional to the time derivative of the current and exists even in absence of any spin relaxation processes.
We report the theoretical investigation of noise spectrum of spin current and spin transfer torque for non-colinear spin polarized transport in a spin-valve device which consists of normal scattering region connected by two ferromagnetic electrodes. Our theory was developed using non-equilibrium Greens function method and general non-linear $S^sigma-V$ and $S^tau-V$ relations were derived as a function of angle $theta$ between magnetization of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that for the MNM system, the auto-correlation of spin current is enough to characterize the fluctuation of spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of spin current are needed to characterize the noise spectrum of spin current. Furthermore, the spin transfer torque and the torque noise were studied for the MNM system. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to $sintheta$ when the system is far away from the resonance. When the system is near the resonance, the spin transfer torque becomes non-sinusoidal function of $theta$. The derivative of noise spectrum of spin transfer torque with respect to the bias voltage $N_tau$ behaves differently when the system is near or far away from the resonance. Specifically, the differential shot noise of spin transfer torque $N_tau$ is a concave function of $theta$ near the resonance while it becomes convex function of $theta$ far away from resonance. For certain bias voltages, the period $N_tau(theta)$ becomes $pi$ instead of $2pi$. For small $theta$, it was found that the differential shot noise of spin transfer torque is very sensitive to the bias voltage and the other system parameters.
We calculate the spin-transfer torque in Fe/MgO/Fe tunnel junctions and compare the results to those for all-metallic junctions. We show that the spin-transfer torque is interfacial in the ferromagnetic layer to a greater degree than in all-metallic junctions. This result originates in the half metallic behavior of Fe for the $Delta_1$ states at the Brillouin zone center; in contrast to all-metallic structures, dephasing does not play an important role. We further show that it is possible to get a component of the torque that is out of the plane of the magnetizations and that is linear in the bias. However, observation of such a torque requires highly ideal samples. In samples with typical interfacial roughness, the torque is similar to that in all-metallic multilayers, although for different reasons.
We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange in teraction. The direction of the domain wall motion can be controlled using the helicity of the laser. Secondly, the domain wall is attracted to the hot-spot generated by the focused laser. Unlike magnetic field driven domain wall depinning, these mechanisms directly drive domain wall motion, providing an optical tweezer like ability to position and locally probe domain walls.
A practical problem for memory applications involving perpendicularly magnetized magnetic tunnel junctions is the reliability of switching characteristics at high-bias voltage. Often it has been observed that at high-bias, additional error processes are present that cause a decrease in switching probability upon further increase of bias voltage. We identify the main cause of such error-rise process through examination of switching statistics as a function of bias voltage and applied field, and the junction switching dynamics in real time. These experiments show a coincidental onset of error-rise and the presence of a new low-frequency microwave emission well below that dictated by the anisotropy field. We show that in a few-macrospin coupled numerical model, this is consistent with an interface region with concentrated perpendicular anisotropy, and where the magnetic moment has limited exchange coupling to the rest of the layers. These results point to the important role high-frequency interface magnetic moment dynamics play in determining the switching characteristics of these tunnel junction devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا