ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Domain Wall Confinement and Dynamics in a Quantum Simulator

114   0   0.0 ( 0 )
 نشر من قبل Wen Lin Tan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Confinement is a ubiquitous mechanism in nature, whereby particles feel an attractive force that increases without bound as they separate. A prominent example is color confinement in particle physics, in which baryons and mesons are produced by quark confinement. Analogously, confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here, we report the first observation of magnetic domain wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can dramatically suppress information propagation and thermalization in such many-body systems. We are able to quantitatively determine the excitation energy of domain wall bound states from non-equilibrium quench dynamics. Furthermore, we study the number of domain wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating exotic high-energy physics phenomena, such as quark collision and string breaking.



قيم البحث

اقرأ أيضاً

Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations. These fluctuations play a dominant role in the quantum critical region surrounding the transition point, where the dy namics are governed by the universal properties associated with the QPT. While time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early universe to Bose Einstein Condensates, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems is an outstanding challenge. Here, we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations while crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM) for an Ising-type QPT, explore scaling universality, and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models, providing new insights into exotic systems that have not been understood previously, and opening the door for precision studies of critical phenomena, simulations of lattice gauge theories and applications to quantum optimization.
Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such syst ems provide unique insights into strongly correlated quantum matter, while at the same time enabling new methods for computation and metrology. Here, we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled via coherent atomic excitation into Rydberg states. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states, and demonstrate the universal properties of an Ising quantum phase transition in (2+1) dimensions. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation, experimentally map the phase diagram, and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics, and hardware-efficient realization of quantum algorithms.
Quantum spin liquids, exotic phases of matter with topological order, have been a major focus of explorations in physical science for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to r ealize robust quantum computation. We use a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states with no local order. The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators that provide direct signatures of topological order and quantum correlations. Its properties are further revealed by using an atom array with nontrivial topology, representing a first step towards topological encoding. Our observations enable the controlled experimental exploration of topological quantum matter and protected quantum information processing.
A proposed paradigm for out-of-equilibrium quantum systems is that an analogue of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dyn amical phases in a cold-atom quantum simulator of the collective Heisenberg model. Our simulator encodes spin in the hyperfine states of ultracold fermionic potassium. Atoms are pinned in a network of single-particle modes, whose spatial extent emulates the long-range interactions of traditional quantum magnets. We find that below a critical interaction strength, magnetization of an initially polarized fermionic gas decays quickly, while above the transition point, the magnetization becomes long-lived, due to an energy gap that protects against dephasing by the inhomogeneous axial field. Our quantum simulation reveals a non-equilibrium transition predicted to exist but not yet directly observed in quenched s-wave superconductors.
Multipartite entanglement tomography, namely the quantum Fisher information (QFI) calculated with respect to different collective operators, allows to fully characterize the phase diagram of the quantum Ising chain in a transverse field with variable -range coupling. In particular, it recognizes the phase stemming from long-range antiferromagnetic coupling, a capability also shared by the spin squeezing. Furthermore, the QFI locates the quantum critical points, both with vanishing and nonvanishing mass gap. In this case, we also relate the finite-size power-law exponent of the QFI to the critical exponents of the model, finding a signal for the breakdown of conformal invariance in the deep long-range regime. Finally, the effect of a finite temperature on the multipartite entanglement, and ultimately on the phase stability, is considered. In light of the current realizations of the model with trapped ions and of the potential measurability of the QFI, our approach yields a promising strategy to probe long-range physics in controllable quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا