ﻻ يوجد ملخص باللغة العربية
We demonstrate that vacuum forming of 10-cm diameter silicon wafers of various crystallographic orientations under an x-ray permeable, flexible window can easily generate spherically bent crystal analyzers (SBCA) and toroidally bent crystal analyzers (TBCA) with ~1-eV energy resolution and a 1-m major radius of curvature. In applications at synchrotron light sources, x-ray free electron lasers, and laboratory spectrometers these characteristics are generally sufficient for many x-ray absorption fine structure (XAFS), x-ray emission spectroscopy (XES), and resonant inelastic x-ray scattering (RIXS) applications in the chemical sciences. Unlike existing optics manufacturing methods using epoxy or anodic bonding, vacuum forming without adhesive is temporary in the sense that the bent wafer can be removed when vacuum is released and exchanged for a different orientation wafer. Therefore, the combination of an x-ray compatible vacuum-forming chamber, a library of thin wafers, and a small number of forms having different secondary curvatures can give extreme flexibility in spectrometer energy range. As proof of this method we determine the energy resolution and reflectivity for several such vacuum-formed bent crystal analyzers (VF-BCA) in laboratory based XAFS and XES studies using a conventional x-ray tube. For completeness we also show x-ray images collected on the detector plane to characterize the resulting focal spots and optical aberrations.
We present the development, manufacturing and performance of spherically bent crystal analyzers (SBCAs) of 100 mm diameter and 0.5 m bending radius. The elastic strain in the crystal wafer is partially released by a strip-bent method where the crysta
The resolution function of a spectrometer based on a strongly bent single crystal (bending radius of 10 cm or less) is evaluated. It is shown that the resolution is controlled by two parameters, (i) the ratio of the lattice spacing of the chosen refl
We describe the design and show first results of a large solid angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers ar
A vacuum-compatible photon-counting hybrid pixel detector has been installed in the ultra-high vacuum (UHV) reflectometer of the four-crystal monochromator (FCM) beamline of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring
The use of strongly bent crystals in spectrometers for pulses of a hard x-ray free-electron laser is explored theoretically. Diffraction is calculated in both dynamical and kinematical theories. It is shown that diffraction can be treated kinematical