ﻻ يوجد ملخص باللغة العربية
The resolution function of a spectrometer based on a strongly bent single crystal (bending radius of 10 cm or less) is evaluated. It is shown that the resolution is controlled by two parameters, (i) the ratio of the lattice spacing of the chosen reflection to the crystal thickness and (ii) a single parameter comprising crystal thickness, its bending radius, and anisotropic elastic constants of the chosen crystal. Diamond, due to its unique elastic properties, can provide notably higher resolution than silicon. The results allow to optimize the parameters of bent crystal spectrometers for the hard X-ray free electron laser sources.
We demonstrate that vacuum forming of 10-cm diameter silicon wafers of various crystallographic orientations under an x-ray permeable, flexible window can easily generate spherically bent crystal analyzers (SBCA) and toroidally bent crystal analyzers
The fluctuations of the longitudinal coherence length expected from the worlds first hard X-ray Free Electron Laser, the Linac Coherent Light Source, are investigated. We analyze, on a shot-to-shot basis, series of power spectra generated from 1D-FEL
We present a cylindrically curved GaAs x-ray spectrometer with energy resolution $Delta E/E = 1.1cdot 10^{-4}$ and wave-number resolution of $Delta k/k = 3cdot 10^{-3}$, allowing plasmon scattering at the resolution limits of the Linac Coherent Light
An X-ray free-electron laser oscillator (XFELO) is a new type of hard X-ray source that would produce fully coherent pulses with meV bandwidth and stable intensity. The XFELO complements existing sources based on self-amplified spontaneous emission (
Resonant elastic X-ray scattering has been widely employed for exploring complex electronic ordering phenomena, like charge, spin, and orbital order, in particular in strongly correlated electronic systems. In addition, recent developments of pump-pr