ترغب بنشر مسار تعليمي؟ اضغط هنا

Sidon sets and 2-caps in $mathbb{F}_3^n$

72   0   0.0 ( 0 )
 نشر من قبل Robert Won
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For each natural number $d$, we introduce the concept of a $d$-cap in $mathbb{F}_3^n$. A subset of $mathbb{F}_3^n$ is called a $d$-cap if, for each $k = 1, 2, dots, d$, no $k+2$ of the points lie on a $k$-dimensional flat. This generalizes the notion of a cap in $mathbb{F}_3^n$. We prove that the $2$-caps in $mathbb{F}_3^n$ are exactly the Sidon sets in $mathbb{F}_3^n$ and study the problem of determining the size of the largest $2$-cap in $mathbb{F}_3^n$.



قيم البحث

اقرأ أيضاً

A subspace of $mathbb{F}_2^n$ is called cyclically covering if every vector in $mathbb{F}_2^n$ has a cyclic shift which is inside the subspace. Let $h_2(n)$ denote the largest possible codimension of a cyclically covering subspace of $mathbb{F}_2^n$. We show that $h_2(p)= 2$ for every prime $p$ such that 2 is a primitive root modulo $p$, which, assuming Artins conjecture, answers a question of Peter Cameron from 1991. We also prove various bounds on $h_2(ab)$ depending on $h_2(a)$ and $h_2(b)$ and extend some of our results to a more general set-up proposed by Cameron, Ellis and Raynaud.
158 - Joseph A. Thas 2017
Let $m_2(n, q), n geq 3$, be the maximum size of k for which there exists a complete k-cap in PG(n, q). In this paper the known bounds for $m_2(n, q), n geq 4$, q even and $q geq 2048$, will be considerably improved.
Let $Asubset mathbb{N}^{n}$ be an $r$-wise $s$-union family, that is, a family of sequences with $n$ components of non-negative integers such that for any $r$ sequences in $A$ the total sum of the maximum of each component in those sequences is at mo st $s$. We determine the maximum size of $A$ and its unique extremal configuration provided (i) $n$ is sufficiently large for fixed $r$ and $s$, or (ii) $n=r+1$.
76 - Michael Tait , Robert Won 2020
An $m$-general set in $AG(n,q)$ is a set of points such that any subset of size $m$ is in general position. A $3$-general set is often called a capset. In this paper, we study the maximum size of an $m$-general set in $AG(n,q)$, significantly improvi ng previous results. When $m=4$ and $q=2$ we give a precise estimate, solving a problem raised by Bennett.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا