ﻻ يوجد ملخص باللغة العربية
Let $Asubset mathbb{N}^{n}$ be an $r$-wise $s$-union family, that is, a family of sequences with $n$ components of non-negative integers such that for any $r$ sequences in $A$ the total sum of the maximum of each component in those sequences is at most $s$. We determine the maximum size of $A$ and its unique extremal configuration provided (i) $n$ is sufficiently large for fixed $r$ and $s$, or (ii) $n=r+1$.
A subspace of $mathbb{F}_2^n$ is called cyclically covering if every vector in $mathbb{F}_2^n$ has a cyclic shift which is inside the subspace. Let $h_2(n)$ denote the largest possible codimension of a cyclically covering subspace of $mathbb{F}_2^n$.
We show that the Union-Closed Conjecture holds for the union-closed family generated by the cyclic translates of any fixed set.
Hefetz, M{u}tze, and Schwartz conjectured that every connected undirected graph admits an antimagic orientation. In this paper we support the analogous question for distance magic labeling. Let $Gamma$ be an Abelian group of order $n$. A textit{direc
For each natural number $d$, we introduce the concept of a $d$-cap in $mathbb{F}_3^n$. A subset of $mathbb{F}_3^n$ is called a $d$-cap if, for each $k = 1, 2, dots, d$, no $k+2$ of the points lie on a $k$-dimensional flat. This generalizes the notion
In this very short note, we point out that the average overlap density of a union-closed family $mathcal{F}$ of subsets of ${1,2,ldots,n}$ may be as small as $Theta((log log |mathcal{F}|)/(log |mathcal{F}|))$, for infinitely many positive integers $n$.