ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved bounds on sizes of generalized caps in $AG(n,q)$

77   0   0.0 ( 0 )
 نشر من قبل Robert Won
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An $m$-general set in $AG(n,q)$ is a set of points such that any subset of size $m$ is in general position. A $3$-general set is often called a capset. In this paper, we study the maximum size of an $m$-general set in $AG(n,q)$, significantly improving previous results. When $m=4$ and $q=2$ we give a precise estimate, solving a problem raised by Bennett.



قيم البحث

اقرأ أيضاً

A number which is S.P in base r is a positive integer which is equal to the sum of its base-r digits multiplied by the product of its base-r digits. These numbers have been studied extensively in The Mathematical Gazette. Recently, Shah Ali obtained the first effective bound on the sizes of S.P numbers. Modifying Shah Alis method, we obtain an improved bound on the number of digits in a base-r S.P number. Our bound is the first sharp bound found for the case r=2.
158 - Joseph A. Thas 2017
Let $m_2(n, q), n geq 3$, be the maximum size of k for which there exists a complete k-cap in PG(n, q). In this paper the known bounds for $m_2(n, q), n geq 4$, q even and $q geq 2048$, will be considerably improved.
81 - Ji-Cai Liu 2021
We establish a congruence on sums of central $q$-binomial coefficients. From this $q$-congruence, we derive the divisibility of the $q$-trinomial coefficients introduced by Andrews and Baxter.
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pa scal identitiy for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
For each natural number $d$, we introduce the concept of a $d$-cap in $mathbb{F}_3^n$. A subset of $mathbb{F}_3^n$ is called a $d$-cap if, for each $k = 1, 2, dots, d$, no $k+2$ of the points lie on a $k$-dimensional flat. This generalizes the notion of a cap in $mathbb{F}_3^n$. We prove that the $2$-caps in $mathbb{F}_3^n$ are exactly the Sidon sets in $mathbb{F}_3^n$ and study the problem of determining the size of the largest $2$-cap in $mathbb{F}_3^n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا