ترغب بنشر مسار تعليمي؟ اضغط هنا

Randomized Wagering Mechanisms

82   0   0.0 ( 0 )
 نشر من قبل Juntao Wang Mr
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wagering mechanisms are one-shot betting mechanisms that elicit agents predictions of an event. For deterministic wagering mechanisms, an existing impossibility result has shown incompatibility of some desirable theoretical properties. In particular, Pareto optimality (no profitable side bet before allocation) can not be achieved together with weak incentive compatibility, weak budget balance and individual rationality. In this paper, we expand the design space of wagering mechanisms to allow randomization and ask whether there are randomized wagering mechanisms that can achieve all previously considered desirable properties, including Pareto optimality. We answer this question positively with two classes of randomized wagering mechanisms: i) one simple randomized lottery-type implementation of existing deterministic wagering mechanisms, and ii) another family of simple and randomized wagering mechanisms which we call surrogate wagering mechanisms, which are robust to noisy ground truth. This family of mechanisms builds on the idea of learning with noisy labels (Natarajan et al. 2013) as well as a recent extension of this idea to the information elicitation without verification setting (Liu and Chen 2018). We show that a broad family of randomized wagering mechanisms satisfy all desirable theoretical properties.

قيم البحث

اقرأ أيضاً

We study social choice mechanisms in an implicit utilitarian framework with a metric constraint, where the goal is to minimize textit{Distortion}, the worst case social cost of an ordinal mechanism relative to underlying cardinal utilities. We consid er two additional desiderata: Constant sample complexity and Squared Distortion. Constant sample complexity means that the mechanism (potentially randomized) only uses a constant number of ordinal queries regardless of the number of voters and alternatives. Squared Distortion is a measure of variance of the Distortion of a randomized mechanism. Our primary contribution is the first social choice mechanism with constant sample complexity textit{and} constant Squared Distortion (which also implies constant Distortion). We call the mechanism Random Referee, because it uses a random agent to compare two alternatives that are the favorites of two other random agents. We prove that the use of a comparison query is necessary: no mechanism that only elicits the top-k preferred alternatives of voters (for constant k) can have Squared Distortion that is sublinear in the number of alternatives. We also prove that unlike any top-k only mechanism, the Distortion of Random Referee meaningfully improves on benign metric spaces, using the Euclidean plane as a canonical example. Finally, among top-1 only mechanisms, we introduce Random Oligarchy. The mechanism asks just 3 queries and is essentially optimal among the class of such mechanisms with respect to Distortion. In summary, we demonstrate the surprising power of constant sample complexity mechanisms generally, and just three random voters in particular, to provide some of the best known results in the implicit utilitarian framework.
Motivated by applications such as college admission and insurance rate determination, we propose an evaluation problem where the inputs are controlled by strategic individuals who can modify their features at a cost. A learner can only partially obse rve the features, and aims to classify individuals with respect to a quality score. The goal is to design an evaluation mechanism that maximizes the overall quality score, i.e., welfare, in the population, taking any strategic updating into account. We further study the algorithmic aspect of finding the welfare maximizing evaluation mechanism under two specific settings in our model. When scores are linear and mechanisms use linear scoring rules on the observable features, we show that the optimal evaluation mechanism is an appropriate projection of the quality score. When mechanisms must use linear thresholds, we design a polynomial time algorithm with a (1/4)-approximation guarantee when the underlying feature distribution is sufficiently smooth and admits an oracle for finding dense regions. We extend our results to settings where the prior distribution is unknown and must be learned from samples.
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities; however, common patterns of behavior often emerge among these agents/entities. Our method aims to leverage these commonalit ies by asking the question: ``What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities? By posing this counterfactual question, we can recognize state-action trajectories within sub-groups of entities that we may have encountered in another task and use what we learned in that task to inform our prediction in the current one. We then reconstruct a prediction of the full returns as a combination of factors considering these disjoint groups of entities and train this ``randomly factorized value function as an auxiliary objective for value-based multi-agent reinforcement learning. By doing so, our model can recognize and leverage similarities across tasks to improve learning efficiency in a multi-task setting. Our approach, Randomized Entity-wise Factorization for Imagined Learning (REFIL), outperforms all strong baselines by a significant margin in challenging multi-task StarCraft micromanagement settings.
67 - Zihe Wang , Zhide Wei , Jie Zhang 2020
The Probabilistic Serial mechanism is well-known for its desirable fairness and efficiency properties. It is one of the most prominent protocols for the random assignment problem. However, Probabilistic Serial is not incentive-compatible, thereby the se desirable properties only hold for the agents declared preferences, rather than their genuine preferences. A substantial utility gain through strategic behaviors would trigger self-interested agents to manipulate the mechanism and would subvert the very foundation of adopting the mechanism in practice. In this paper, we characterize the extent to which an individual agent can increase its utility by strategic manipulation. We show that the incentive ratio of the mechanism is $frac{3}{2}$. That is, no agent can misreport its preferences such that its utility becomes more than 1.5 times of what it is when reports truthfully. This ratio is a worst-case guarantee by allowing an agent to have complete information about other agents reports and to figure out the best response strategy even if it is computationally intractable in general. To complement this worst-case study, we further evaluate an agents utility gain on average by experiments. The experiments show that an agent incentive in manipulating the rule is very limited. These results shed some light on the robustness of Probabilistic Serial against strategic manipulation, which is one step further than knowing that it is not incentive-compatible.
We propose a model of interdependent scheduling games in which each player controls a set of services that they schedule independently. A player is free to schedule his own services at any time; however, each of these services only begins to accrue r eward for the player when all predecessor services, which may or may not be controlled by the same player, have been activated. This model, where players have interdependent services, is motivated by the problems faced in planning and coordinating large-scale infrastructures, e.g., restoring electricity and gas to residents after a natural disaster or providing medical care in a crisis when different agencies are responsible for the delivery of staff, equipment, and medicine. We undertake a game-theoretic analysis of this setting and in particular consider the issues of welfare maximization, computing best responses, Nash dynamics, and existence and computation of Nash equilibria.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا