ﻻ يوجد ملخص باللغة العربية
Motivated by applications such as college admission and insurance rate determination, we propose an evaluation problem where the inputs are controlled by strategic individuals who can modify their features at a cost. A learner can only partially observe the features, and aims to classify individuals with respect to a quality score. The goal is to design an evaluation mechanism that maximizes the overall quality score, i.e., welfare, in the population, taking any strategic updating into account. We further study the algorithmic aspect of finding the welfare maximizing evaluation mechanism under two specific settings in our model. When scores are linear and mechanisms use linear scoring rules on the observable features, we show that the optimal evaluation mechanism is an appropriate projection of the quality score. When mechanisms must use linear thresholds, we design a polynomial time algorithm with a (1/4)-approximation guarantee when the underlying feature distribution is sufficiently smooth and admits an oracle for finding dense regions. We extend our results to settings where the prior distribution is unknown and must be learned from samples.
A common objective in mechanism design is to choose the outcome (for example, allocation of resources) that maximizes the sum of the agents valuations, without introducing incentives for agents to misreport their preferences. The class of Groves mech
Mobile crowdsensing has shown a great potential to address large-scale data sensing problems by allocating sensing tasks to pervasive mobile users. The mobile users will participate in a crowdsensing platform if they can receive satisfactory reward.
While microtask crowdsourcing provides a new way to solve large volumes of small tasks at a much lower price compared with traditional in-house solutions, it suffers from quality problems due to the lack of incentives. On the other hand, providing in
Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, i
We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a s