ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural transformations during periodic deformation of low-porosity amorphous materials

66   0   0.0 ( 0 )
 نشر من قبل Nikolai Priezjev V.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomistic simulations are employed to study structural evolution of pore ensembles in binary glasses under periodic shear deformation with varied amplitude. The consideration is given to porous systems in the limit of low porosity. The initial ensembles of pores are comprised of multiple pores with small sizes, which are approximately normally distributed. As periodic loading proceeds, the ensembles evolve into configurations with a few large-scale pores and significantly reduced number of small pores. These structural changes are reflected in the skewed shapes of the pore-size distribution functions and the appearance of a distinct peak at large length scales after hundreds of shear cycles. Moreover, periodic shear causes substantial densification of solid domains in the porous systems. The structural evolution of pore ensembles is found to stem from the formation of shear-band like regions of enhanced particle mobility after a number of transient cycles. The spatial extent of increased mobility depends strongly on the strain amplitude. A scaling theory is developed to qualitatively describe the transformation of the pore initial configurations of small-size voids into larger-scale void agglomerates.

قيم البحث

اقرأ أيضاً

The role of porous structure and glass density in response to compressive deformation of amorphous materials is investigated via molecular dynamics simulations. The disordered, porous structures were prepared by quenching a high-temperature binary mi xture below the glass transition into the phase coexistence region. With decreasing average glass density, the pore morphology in quiescent samples varies from a random distribution of compact voids to a porous network embedded in a continuous glass phase. We find that during compressive loading at constant volume, the porous structure is linearly transformed in the elastic regime and the elastic modulus follows a power-law increase as a function of the average glass density. Upon further compression, pores deform significantly and coalesce into large voids leading to formation of domains with nearly homogeneous glass phase, which provides an enhanced resistance to deformation at high strain.
The evolution of porous structure, potential energy and local density in binary glasses under oscillatory shear deformation is investigated using molecular dynamics simulations. The porous glasses were initially prepared via a rapid thermal quench fr om the liquid state across the glass transition and allowed to phase separate and solidify at constant volume, thus producing an extended porous network in an amorphous solid. We find that under periodic shear, the potential energy decreases over consecutive cycles due to gradual rearrangement of the glassy material, and the minimum of the potential energy after thousands of shear cycles is lower at larger strain amplitudes. Moreover, with increasing cycle number, the pore size distributions become more skewed toward larger length scales where a distinct peak is developed and the peak intensity is enhanced at larger strain amplitudes. The numerical analysis of the local density distribution functions demonstrates that cyclic loading leads to formation of higher density solid domains and homogenization of the glass phase with reduced density.
The time evolution of the pore size distributions and mechanical properties of amorphous solids at constant pressure is studied using molecular dynamics simulations. The porous glasses were initially prepared at constant volume conditions via a rapid thermal quench from the liquid state to the glassy region and allowing for simultaneous phase separation and material solidification. We found that at constant pressure and low temperature, the porous network becomes more compact and the glassy systems relocate to progressively lower levels of the potential energy. Although the elastic modulus and the average glass density both increase with the waiting time, their dependence is described by the power-law function with the same exponent. Moreover, the results of numerical simulations demonstrated that under tensile loading at constant pressure, low-density porous samples become significantly deformed and break up into separate domains at high strain, while dense glasses form a nearly homogeneous solid material.
Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecula r rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulation.
Yield stress fluids display complex dynamics, in particular when driven into the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesocale elasto-plastic descriptions t o analyze such transient dynamics in athermal systems. Both our mean-field and space-dependent approaches consistently reproduce the typical experimental strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age. By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal different modes of cooperative motion during the creep dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا