ﻻ يوجد ملخص باللغة العربية
The time evolution of the pore size distributions and mechanical properties of amorphous solids at constant pressure is studied using molecular dynamics simulations. The porous glasses were initially prepared at constant volume conditions via a rapid thermal quench from the liquid state to the glassy region and allowing for simultaneous phase separation and material solidification. We found that at constant pressure and low temperature, the porous network becomes more compact and the glassy systems relocate to progressively lower levels of the potential energy. Although the elastic modulus and the average glass density both increase with the waiting time, their dependence is described by the power-law function with the same exponent. Moreover, the results of numerical simulations demonstrated that under tensile loading at constant pressure, low-density porous samples become significantly deformed and break up into separate domains at high strain, while dense glasses form a nearly homogeneous solid material.
The role of porous structure and glass density in response to compressive deformation of amorphous materials is investigated via molecular dynamics simulations. The disordered, porous structures were prepared by quenching a high-temperature binary mi
The evolution of porous structure and mechanical properties of binary glasses under tensile loading were examined using molecular dynamics simulations. We consider vitreous systems obtained in the process of phase separation after a rapid isochoric q
The history dependence of the glasses formed from flow-melted steady states by a sudden cessation of the shear rate $dotgamma$ is studied in colloidal suspensions, by molecular dynamics simulations, and mode-coupling theory. In an ideal glass, stress
We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulation. An ext
We use computer simulations to study the cooling rate dependence of the stability and energetics of model glasses created at constant pressure conditions and compare the results with glasses formed at constant volume conditions. To examine the stabil