ﻻ يوجد ملخص باللغة العربية
Many modern machine learning classifiers are shown to be vulnerable to adversarial perturbations of the instances. Despite a massive amount of work focusing on making classifiers robust, the task seems quite challenging. In this work, through a theoretical study, we investigate the adversarial risk and robustness of classifiers and draw a connection to the well-known phenomenon of concentration of measure in metric measure spaces. We show that if the metric probability space of the test instance is concentrated, any classifier with some initial constant error is inherently vulnerable to adversarial perturbations. One class of concentrated metric probability spaces are the so-called Levy families that include many natural distributions. In this special case, our attacks only need to perturb the test instance by at most $O(sqrt n)$ to make it misclassified, where $n$ is the data dimension. Using our general result about Levy instance spaces, we first recover as special case some of the previously proved results about the existence of adversarial examples. However, many more Levy families are known (e.g., product distribution under the Hamming distance) for which we immediately obtain new attacks that find adversarial examples of distance $O(sqrt n)$. Finally, we show that concentration of measure for product spaces implies the existence of forms of poisoning attacks in which the adversary tampers with the training data with the goal of degrading the classifier. In particular, we show that for any learning algorithm that uses $m$ training examples, there is an adversary who can increase the probability of any bad property (e.g., failing on a particular test instance) that initially happens with non-negligible probability to $approx 1$ by substituting only $tilde{O}(sqrt m)$ of the examples with other (still correctly labeled) examples.
In reward-poisoning attacks against reinforcement learning (RL), an attacker can perturb the environment reward $r_t$ into $r_t+delta_t$ at each step, with the goal of forcing the RL agent to learn a nefarious policy. We categorize such attacks by th
We study a security threat to reinforcement learning where an attacker poisons the learning environment to force the agent into executing a target policy chosen by the attacker. As a victim, we consider RL agents whose objective is to find a policy t
Product measures of dimension $n$ are known to be concentrated in Hamming distance: for any set $S$ in the product space of probability $epsilon$, a random point in the space, with probability $1-delta$, has a neighbor in $S$ that is different from t
As machine learning systems grow in scale, so do their training data requirements, forcing practitioners to automate and outsource the curation of training data in order to achieve state-of-the-art performance. The absence of trustworthy human superv
We study black-box reward poisoning attacks against reinforcement learning (RL), in which an adversary aims to manipulate the rewards to mislead a sequence of RL agents with unknown algorithms to learn a nefarious policy in an environment unknown to