ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Hall Effect Measurement of Spin-Orbit Coupling Strengths in Ultraclean Bilayer Graphene/WSe2 Heterostructures

71   0   0.0 ( 0 )
 نشر من قبل Dongying Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study proximity-induced spin-orbit coupling (SOC) in bilayer graphene/few-layer WSe2 heterostructure devices. Contact mode atomic force microscopy (AFM) cleaning yields ultra-clean interfaces and high-mobility devices. In a perpendicular magnetic field, we measure the quantum Hall effect to determine the Landau level structure in the presence of out-of-plane Ising and in-plane Rashba SOC. A distinct Landau level crossing pattern emerges when tuning the charge density and displacement field independently with dual gates, originating from a layer-selective SOC proximity effect. Analyzing the Landau level crossings and measured inter-Landau level energy gaps yields the proximity induced SOC energy scale. The Ising SOC is ~ 2.2 meV, 100 times higher than the intrinsic SOC in graphene, while its sign is consistent with theories predicting a dependence of SOC on interlayer twist angle. The Rashba SOC is ~15 meV. Finally, we infer the magnetic field dependence of the inter-Landau level Coulomb interactions. These ultraclean bilayer graphene/WSe2 heterostructures provide a high mobility system with the potential to realize novel topological electronic states and manipulate spins in nanostructures.

قيم البحث

اقرأ أيضاً

Spin-orbit coupling in graphene can be increased far beyond its intrinsic value by proximity coupling to a transition metal dichalcogenide. In bilayer graphene, this effect was predicted to depend on the occupancy of both graphene layers, rendering i t gate-tunable by an out-of-plane electric field. We experimentally confirm this prediction by studying magnetotransport in a dual-gated WSe$_2$/bilayer graphene heterostructure. Weak antilocalization, which is characteristic for phase-coherent transport in diffusive samples with spin-orbit interaction, can be strongly enhanced or suppressed at constant carrier density, depending on the polarity of the electric field. From the spin-orbit scattering times extracted from the fits, we calculate the corresponding Rashba and intrinsic spin-orbit parameters. They show a strong dependence on the transverse electric field, which is well described by a gate-dependent layer polarization of bilayer graphene.
We study the effect of anisotropy of the Rashba coupling on the extrinsic spin Hall effect due to spin-orbit active adatoms on graphene. In addition to the intrinsic spin-orbit coupling, a generalized anisotropic Rashba coupling arising from the brea kdown of both mirror and hexagonal symmetries of pristine graphene is considered. We find that Rashba anisotropy can strongly modify the dependence of the spin Hall angle on carrier concentration. Our model provides a simple and general description of the skew scattering mechanism due to the spin-orbit coupling that is induced by proximity to large adatom clusters.
Recent studies have shown that moir{e} flat bands in a twisted bilayer graphene(TBG) can acquire nontrivial Berry curvatures when aligned with hexagonal boron nitride substrate [1, 2], which can be manifested as a correlated Chern insulator near the 3/4 filling [3, 4]. In this work, we show that the large Berry curvatures in the moir{e} bands lead to strong nonlinear Hall(NLH) effect in a strained TBG with general filling factors. Under a weak uniaxial strain $sim 0.1%$, the Berry curvature dipole which characterizes the nonlinear Hall response can be as large as $sim$ 200{AA}, exceeding the values of all previously known nonlinear Hall materials [5-14] by two orders of magnitude. The dependence of the giant NLH effect as a function of electric gating, strain and twist angle is further investigated systematically. Importantly, we point out that the giant NLH effect appears generically for twist angle near the magic angle due to the strong susceptibility of nearly flat moir{e} bands to symmetry breaking induced by strains. Our results establish TBG as a practical platform for tunable NLH effect and novel transport phenomena driven by nontrivial Berry phases.
Spin orbit coupling (SOC) is the key to realizing time-reversal invariant topological phases of matter. Famously, SOC was predicted by Kane and Mele to stabilize a quantum spin Hall insulator; however, the weak intrinsic SOC in monolayer graphene has precluded experimental observation. Here, we exploit a layer-selective proximity effect---achieved via van der Waals contact to a semiconducting transition metal dichalcogenide--to engineer Kane-Mele SOC in ultra-clean textit{bilayer} graphene. Using high-resolution capacitance measurements to probe the bulk electronic compressibility, we find that SOC leads to the formation of a distinct incompressible, gapped phase at charge neutrality. The experimental data agrees quantitatively with a simple theoretical model in which the new phase results from SOC-driven band inversion. In contrast to Kane-Mele SOC in monolayer graphene, the inverted phase is not expected to be a time reversal invariant topological insulator, despite being separated from conventional band insulators by electric field tuned phase transitions where crystal symmetry mandates that the bulk gap must close. Electrical transport measurements, conspicuously, reveal that the inverted phase has a conductivity $sim e^2/h$, which is suppressed by exceptionally small in-plane magnetic fields. The high conductivity and anomalous magnetoresistance are consistent with theoretical models that predict helical edge states within the inversted phase, that are protected from backscattering by an emergent spin symmetry that remains robust even for large Rashba SOC. Our results pave the way for proximity engineering of strong topological insulators as well as correlated quantum phases in the strong spin-orbit regime in graphene heterostructures.
We report on the observation of the acoustic spin Hall effect that facilitates lattice motion induced spin current via spin orbit interaction (SOI). Under excitation of surface acoustic wave (SAW), we find a spin current flows orthogonal to the propa gation direction of a surface acoustic wave (SAW) in non-magnetic metals. The acoustic spin Hall effect manifests itself in a field-dependent acoustic voltage in non-magnetic metal (NM)/ferromagnetic metal (FM) bilayers. The acoustic voltage takes a maximum when the NM layer thickness is close to its spin diffusion length, vanishes for NM layers with weak SOI and increases linearly with the SAW frequency. To account for these results, we find the spin current must scale with the SOI and the time derivative of the lattice displacement. Such form of spin current can be derived from a Berry electric field associated with time varying Berry curvature and/or an unconventional spin-lattice interaction mediated by SOI. These results, which imply the strong coupling of electron spins with rotating lattices via the SOI, show the potential of lattice dynamics to supply spin current in strong spin orbit metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا