ﻻ يوجد ملخص باللغة العربية
Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show for the first time an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single layer graphene encapsulated between the transition metal dichalcogenide WSe$_2$ and hBN is found to exhibit exceptional quality with mobilities as high as 100000 cm^2/V/s. At the same time clear weak anti-localization indicates strong spin-orbit coupling and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.
We investigate interlayer tunneling in heterostructures consisting of two tungsten diselenide (WSe2) monolayers with controlled rotational alignment, and separated by hexagonal boron nitride. In samples where the two WSe2 monolayers are rotationally
We study spin-transport in bilayer-graphene (BLG), spin-orbit coupled to a tungsten di sulfide (WS$_2$) substrate, and measure a record spin lifetime anisotropy ~40-70, i.e. ratio between the out-of-plane $tau_{perp}$ and in-plane spin relaxation tim
The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has be
We study the impacts of the magnetic field direction on the spin-manipulation and the spin-relaxation in a one-dimensional quantum dot with strong spin-orbit coupling. The energy spectrum and the corresponding eigenfunctions in the quantum dot are ob
Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly