ﻻ يوجد ملخص باللغة العربية
We prove that the heavy clusters are indistinguishable for Bernoulli percolation on quasi-transitive nonunimodular graphs. As an application, we show that the uniqueness threshold of any quasi-transitive graph is also the threshold for connectivity decay. This resolves a question of Lyons and Schramm (1999) in the Bernoulli percolation case and confirms a conjecture of Schonmann (2001). We also prove that every infinite cluster of Bernoulli percolation on a nonamenable quasi-transitive graph is transient almost surely.
We study a dependent site percolation model on the $n$-dimensional Euclidean lattice where, instead of single sites, entire hyperplanes are removed independently at random. We extend the results about Bernoulli line percolation showing that the model
We prove that for Bernoulli percolation on $mathbb{Z}^d$, $dgeq 2$, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, w
We consider the Bernoulli Boolean discrete percolation model on the d-dimensional integer lattice. We study sufficient conditions on the distribution of the radii of balls placed at the points of a Bernoulli point process for the absence of percolati
Consider an anisotropic independent bond percolation model on the $d$-dimensional hypercubic lattice, $dgeq 2$, with parameter $p$. We show that the two point connectivity function $P_{p}({(0,dots,0)leftrightarrow (n,0,dots,0)})$ is a monotone functi
In this note we study some properties of infinite percolation clusters on non-amenable graphs. In particular, we study the percolative properties of the complement of infinite percolation clusters. An approach based on mass-transport is adapted to sh